Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 216 x^{14} - 336 x^{13} + 358 x^{12} - 42 x^{11} - 654 x^{10} + 1224 x^{9} - 1044 x^{8} + 192 x^{7} + 1849 x^{6} - 4557 x^{5} + 5559 x^{4} - 3996 x^{3} + 1740 x^{2} - 432 x + 48 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-35347840065093568067138671875=-\,3^{21}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{80} a^{15} + \frac{1}{40} a^{13} + \frac{1}{40} a^{12} + \frac{1}{20} a^{10} - \frac{1}{40} a^{9} + \frac{1}{40} a^{8} - \frac{7}{40} a^{7} - \frac{1}{8} a^{6} + \frac{1}{10} a^{5} - \frac{1}{20} a^{4} + \frac{17}{80} a^{3} + \frac{3}{8} a^{2} - \frac{7}{20} a + \frac{1}{5}$, $\frac{1}{195040} a^{16} - \frac{1}{24380} a^{15} - \frac{51}{24380} a^{14} + \frac{749}{48760} a^{13} + \frac{729}{12190} a^{12} - \frac{16}{265} a^{11} - \frac{6057}{97520} a^{10} + \frac{833}{12190} a^{9} + \frac{397}{4876} a^{8} - \frac{1767}{48760} a^{7} - \frac{211}{6095} a^{6} + \frac{1}{6095} a^{5} - \frac{8351}{195040} a^{4} + \frac{251}{1060} a^{3} - \frac{2293}{12190} a^{2} - \frac{173}{4876} a + \frac{1076}{6095}$, $\frac{1}{9166880} a^{17} + \frac{3}{1833376} a^{16} + \frac{17989}{4583440} a^{15} + \frac{2901}{4583440} a^{14} - \frac{26759}{4583440} a^{13} + \frac{10081}{199280} a^{12} + \frac{54531}{1145860} a^{11} - \frac{1163}{1145860} a^{10} - \frac{478763}{4583440} a^{9} + \frac{160801}{4583440} a^{8} + \frac{177427}{4583440} a^{7} - \frac{303147}{4583440} a^{6} - \frac{194125}{1833376} a^{5} - \frac{91673}{398560} a^{4} + \frac{871981}{2291720} a^{3} - \frac{267541}{2291720} a^{2} - \frac{20659}{286465} a + \frac{4007}{24910}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{156909}{1145860} a^{17} + \frac{2667453}{2291720} a^{16} - \frac{1091333}{229172} a^{15} + \frac{5700183}{458344} a^{14} - \frac{2338609}{99640} a^{13} + \frac{7918365}{229172} a^{12} - \frac{73908587}{2291720} a^{11} - \frac{22136763}{2291720} a^{10} + \frac{96416343}{1145860} a^{9} - \frac{57733845}{458344} a^{8} + \frac{187720307}{2291720} a^{7} + \frac{13895553}{1145860} a^{6} - \frac{112686275}{458344} a^{5} + \frac{575120241}{1145860} a^{4} - \frac{147992618}{286465} a^{3} + \frac{342958449}{1145860} a^{2} - \frac{5625996}{57293} a + \frac{4348757}{286465} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161495309.756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.33075.1 x3, 3.1.1323.1 x3, 3.1.675.1 x3, 3.1.3675.1 x3, 6.0.3281866875.1, 6.0.5250987.1, 6.0.1366875.1, 6.0.40516875.1, 9.1.108547746890625.3 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |