Normalized defining polynomial
\( x^{18} + 9 x^{16} - 9 x^{15} + 162 x^{14} - 99 x^{13} + 1473 x^{12} - 1404 x^{11} + 6264 x^{10} - 5939 x^{9} + 12636 x^{8} - 11961 x^{7} + 14742 x^{6} - 10530 x^{5} + 7452 x^{4} - 3267 x^{3} + 1215 x^{2} - 243 x + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-352460338371438479971671591=-\,3^{44}\cdot 71^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{9} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{3} a^{9} + \frac{1}{9} a^{6}$, $\frac{1}{27} a^{16} - \frac{1}{9} a^{13} + \frac{1}{3} a^{11} - \frac{1}{9} a^{10} + \frac{10}{27} a^{7} - \frac{1}{3} a^{5} + \frac{2}{9} a^{4} + \frac{1}{3} a$, $\frac{1}{28413622886531926918619835459} a^{17} - \frac{11074204946674273893928424}{3157069209614658546513315051} a^{16} + \frac{12630236375693410591634719}{1052356403204886182171105017} a^{15} + \frac{262508912144760625746747458}{9471207628843975639539945153} a^{14} - \frac{361163591630663115991111016}{3157069209614658546513315051} a^{13} + \frac{228862743062356682673995540}{3157069209614658546513315051} a^{12} - \frac{4161026043950666516493754897}{9471207628843975639539945153} a^{11} + \frac{391895485187855328363257073}{1052356403204886182171105017} a^{10} + \frac{204892188700272501761736024}{1052356403204886182171105017} a^{9} + \frac{5286395397800835724409138800}{28413622886531926918619835459} a^{8} + \frac{155932127252992541935486036}{3157069209614658546513315051} a^{7} - \frac{1211626597706022261554427304}{3157069209614658546513315051} a^{6} - \frac{926428296245398845781170016}{9471207628843975639539945153} a^{5} - \frac{6991817188266597766852352}{3157069209614658546513315051} a^{4} + \frac{283649692125368924357868634}{3157069209614658546513315051} a^{3} - \frac{1311104624227171381282885133}{3157069209614658546513315051} a^{2} - \frac{102778970724412649629453482}{1052356403204886182171105017} a + \frac{338509866103359584776018440}{1052356403204886182171105017}$
Class group and class number
$C_{21}$, which has order $21$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_9$ (as 18T26):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_2\times C_2^2:C_9$ |
| Character table for $C_2\times C_2^2:C_9$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.0.465831.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| $71$ | 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.6.3.1 | $x^{6} - 142 x^{4} + 5041 x^{2} - 1431644$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |