Normalized defining polynomial
\( x^{18} + 69 x^{16} - 342 x^{15} + 4842 x^{14} - 20664 x^{13} + 299506 x^{12} - 884196 x^{11} + 9112317 x^{10} - 21399912 x^{9} + 191614905 x^{8} - 98215254 x^{7} + 3750331288 x^{6} - 3908734704 x^{5} + 65580672912 x^{4} - 101131530336 x^{3} + 545791014144 x^{2} - 452406256128 x + 1509470846976 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-35194614989005626327530535731700788800837489791=-\,3^{27}\cdot 7^{12}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $385.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2331=3^{2}\cdot 7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2331}(1,·)$, $\chi_{2331}(898,·)$, $\chi_{2331}(1220,·)$, $\chi_{2331}(1222,·)$, $\chi_{2331}(2321,·)$, $\chi_{2331}(788,·)$, $\chi_{2331}(1877,·)$, $\chi_{2331}(344,·)$, $\chi_{2331}(1444,·)$, $\chi_{2331}(988,·)$, $\chi_{2331}(100,·)$, $\chi_{2331}(2209,·)$, $\chi_{2331}(676,·)$, $\chi_{2331}(1766,·)$, $\chi_{2331}(233,·)$, $\chi_{2331}(1775,·)$, $\chi_{2331}(1331,·)$, $\chi_{2331}(1786,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{640} a^{9} + \frac{1}{320} a^{7} - \frac{1}{40} a^{6} - \frac{31}{640} a^{5} - \frac{17}{160} a^{3} + \frac{1}{40} a^{2} + \frac{7}{20} a - \frac{2}{5}$, $\frac{1}{1280} a^{10} - \frac{1}{1280} a^{9} + \frac{1}{640} a^{8} - \frac{9}{640} a^{7} - \frac{3}{256} a^{6} - \frac{49}{1280} a^{5} + \frac{3}{320} a^{4} - \frac{79}{320} a^{3} + \frac{1}{10} a^{2} + \frac{1}{5}$, $\frac{1}{2560} a^{11} - \frac{1}{2560} a^{10} - \frac{1}{1280} a^{9} + \frac{1}{1280} a^{8} + \frac{57}{2560} a^{7} + \frac{11}{512} a^{6} + \frac{17}{320} a^{5} + \frac{3}{320} a^{4} + \frac{11}{160} a^{2} - \frac{3}{8} a + \frac{2}{5}$, $\frac{1}{10240} a^{12} - \frac{1}{10240} a^{10} + \frac{1}{5120} a^{9} - \frac{37}{10240} a^{8} + \frac{1}{2560} a^{7} + \frac{217}{10240} a^{6} + \frac{49}{5120} a^{5} + \frac{147}{2560} a^{4} + \frac{259}{1280} a^{3} - \frac{9}{40} a^{2} - \frac{1}{16} a - \frac{1}{5}$, $\frac{1}{40960} a^{13} - \frac{1}{20480} a^{12} - \frac{1}{8192} a^{11} + \frac{7}{40960} a^{9} - \frac{13}{20480} a^{8} + \frac{509}{40960} a^{7} + \frac{203}{10240} a^{6} + \frac{33}{2560} a^{5} + \frac{79}{2560} a^{4} + \frac{399}{2560} a^{3} + \frac{11}{80} a^{2} + \frac{1}{32} a$, $\frac{1}{163840} a^{14} + \frac{1}{163840} a^{13} + \frac{1}{163840} a^{12} + \frac{1}{163840} a^{11} - \frac{21}{163840} a^{10} + \frac{51}{163840} a^{9} + \frac{19}{163840} a^{8} - \frac{4253}{163840} a^{7} + \frac{179}{10240} a^{6} + \frac{847}{20480} a^{5} - \frac{19}{10240} a^{4} + \frac{591}{10240} a^{3} + \frac{29}{320} a^{2} + \frac{301}{640} a + \frac{7}{20}$, $\frac{1}{119603200} a^{15} - \frac{351}{119603200} a^{14} - \frac{55}{4784128} a^{13} + \frac{1}{119603200} a^{12} + \frac{203}{119603200} a^{11} + \frac{22003}{119603200} a^{10} - \frac{74829}{119603200} a^{9} - \frac{104733}{119603200} a^{8} - \frac{187971}{7475200} a^{7} - \frac{368861}{14950400} a^{6} + \frac{294689}{7475200} a^{5} - \frac{216921}{7475200} a^{4} + \frac{22083}{93440} a^{3} + \frac{87773}{467200} a^{2} + \frac{2371}{29200} a - \frac{497}{1825}$, $\frac{1}{32053657600} a^{16} - \frac{13}{3205365760} a^{15} + \frac{7091}{8013414400} a^{14} - \frac{63741}{8013414400} a^{13} - \frac{279013}{16026828800} a^{12} - \frac{3287}{62604800} a^{11} + \frac{2487781}{8013414400} a^{10} + \frac{4469757}{8013414400} a^{9} - \frac{49705519}{32053657600} a^{8} + \frac{388346153}{16026828800} a^{7} + \frac{27639617}{4006707200} a^{6} + \frac{80776993}{2003353600} a^{5} + \frac{32494089}{2003353600} a^{4} + \frac{96626049}{1001676800} a^{3} + \frac{18964189}{125209600} a^{2} + \frac{14178587}{62604800} a + \frac{489577}{1956400}$, $\frac{1}{252525293536136008038947574007048583507136112230400} a^{17} - \frac{384089066552190511709562896516569991591}{50505058707227201607789514801409716701427222446080} a^{16} - \frac{93066769415476883193899448155985025023129}{126262646768068004019473787003524291753568056115200} a^{15} - \frac{225267782185886154289664941299313041526133}{3945707711502125125608555843860134117299001753600} a^{14} + \frac{470813300882440147159425633133626238819493717}{126262646768068004019473787003524291753568056115200} a^{13} + \frac{4463505963877529440878039203034358222617151077}{126262646768068004019473787003524291753568056115200} a^{12} - \frac{11287537586177147802517994681338936735337519163}{63131323384034002009736893501762145876784028057600} a^{11} + \frac{233944877453026605053895656709949620655964831}{7891415423004250251217111687720268234598003507200} a^{10} + \frac{57851465148910332586066352731677949286443758429}{252525293536136008038947574007048583507136112230400} a^{9} - \frac{628821367200786837728837062684603296700006538943}{252525293536136008038947574007048583507136112230400} a^{8} - \frac{1545835820846900022112764974019614288926640079781}{126262646768068004019473787003524291753568056115200} a^{7} + \frac{159555758394375583843983627005921323870116484193}{31565661692017001004868446750881072938392014028800} a^{6} + \frac{91341186072078105365603740609697854226074567137}{1972853855751062562804277921930067058649500876800} a^{5} + \frac{127846598497523103538748574003628059110966894693}{3156566169201700100486844675088107293839201402880} a^{4} - \frac{13587117757781748448314378829991806490742530961}{108101581137044523989275502571510523761616486400} a^{3} - \frac{2673421090005184518603725954406686099198516781}{14722789968291511662718491954701992974996275200} a^{2} - \frac{228136028392560760746356319276526620179742577147}{493213463937765640701069480482516764662375219200} a + \frac{1345891606065775673664065223510458655517137591}{15412920748055176271908421265078648895699225600}$
Class group and class number
$C_{6}\times C_{126}\times C_{4356072}$, which has order $3293190432$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 958454033532.8324 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), 3.3.5433561.1, 3.3.67081.1, 3.3.110889.2, 3.3.3969.1, 6.0.3277117950620031.2, 6.0.4495360700439.3, 6.0.1364897105631.1, 6.0.2393804200599.7, 9.9.160418200800801137481.10 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.9 | $x^{6} + 6 x^{4} + 21$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 37 | Data not computed | ||||||