Normalized defining polynomial
\( x^{18} + 72 x^{16} + 2160 x^{14} + 34944 x^{12} + 329472 x^{10} - 4693 x^{9} + 1824768 x^{8} - 168948 x^{7} + 5677056 x^{6} - 2027376 x^{5} + 8847360 x^{4} - 9010560 x^{3} + 5308416 x^{2} - 10812672 x + 22810681 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-350345670377968069507061800493571=-\,3^{45}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(459=3^{3}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{459}(256,·)$, $\chi_{459}(1,·)$, $\chi_{459}(458,·)$, $\chi_{459}(203,·)$, $\chi_{459}(205,·)$, $\chi_{459}(407,·)$, $\chi_{459}(152,·)$, $\chi_{459}(409,·)$, $\chi_{459}(154,·)$, $\chi_{459}(356,·)$, $\chi_{459}(101,·)$, $\chi_{459}(358,·)$, $\chi_{459}(103,·)$, $\chi_{459}(305,·)$, $\chi_{459}(50,·)$, $\chi_{459}(307,·)$, $\chi_{459}(52,·)$, $\chi_{459}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{1165} a^{9} + \frac{36}{1165} a^{7} + \frac{432}{1165} a^{5} - \frac{82}{233} a^{3} - \frac{26}{1165} a + \frac{566}{1165}$, $\frac{1}{1165} a^{10} + \frac{36}{1165} a^{8} + \frac{432}{1165} a^{6} - \frac{82}{233} a^{4} - \frac{26}{1165} a^{2} + \frac{566}{1165} a$, $\frac{1}{1165} a^{11} + \frac{301}{1165} a^{7} + \frac{348}{1165} a^{5} - \frac{411}{1165} a^{3} + \frac{566}{1165} a^{2} - \frac{229}{1165} a - \frac{571}{1165}$, $\frac{1}{1165} a^{12} + \frac{301}{1165} a^{8} + \frac{348}{1165} a^{6} - \frac{411}{1165} a^{4} + \frac{566}{1165} a^{3} - \frac{229}{1165} a^{2} - \frac{571}{1165} a$, $\frac{1}{1165} a^{13} - \frac{3}{1165} a^{7} + \frac{37}{1165} a^{5} + \frac{566}{1165} a^{4} - \frac{309}{1165} a^{3} - \frac{571}{1165} a^{2} - \frac{329}{1165} a - \frac{276}{1165}$, $\frac{1}{25963647845} a^{14} - \frac{261187}{25963647845} a^{13} + \frac{56}{25963647845} a^{12} + \frac{8704669}{25963647845} a^{11} + \frac{1232}{25963647845} a^{10} - \frac{4197764}{25963647845} a^{9} + \frac{2688}{5192729569} a^{8} - \frac{12235412784}{25963647845} a^{7} + \frac{75264}{25963647845} a^{6} - \frac{3031803574}{25963647845} a^{5} + \frac{10095936733}{25963647845} a^{4} - \frac{11546059826}{25963647845} a^{3} - \frac{7599459309}{25963647845} a^{2} + \frac{7130669616}{25963647845} a - \frac{5638424661}{25963647845}$, $\frac{1}{25963647845} a^{15} + \frac{12}{5192729569} a^{13} + \frac{1044748}{25963647845} a^{12} + \frac{288}{5192729569} a^{11} + \frac{5575118}{25963647845} a^{10} + \frac{3520}{5192729569} a^{9} - \frac{701958024}{25963647845} a^{8} + \frac{23040}{5192729569} a^{7} + \frac{3900644391}{25963647845} a^{6} + \frac{387072}{25963647845} a^{5} + \frac{6955325676}{25963647845} a^{4} + \frac{11544925014}{25963647845} a^{3} + \frac{10967608524}{25963647845} a^{2} + \frac{9449676392}{25963647845} a - \frac{11187168582}{25963647845}$, $\frac{1}{25963647845} a^{16} - \frac{1114085}{5192729569} a^{13} - \frac{384}{5192729569} a^{12} - \frac{4117983}{25963647845} a^{11} - \frac{11264}{5192729569} a^{10} - \frac{4364324}{25963647845} a^{9} - \frac{138240}{5192729569} a^{8} - \frac{300502266}{25963647845} a^{7} - \frac{4128768}{25963647845} a^{6} - \frac{12226583923}{25963647845} a^{5} - \frac{9661476969}{25963647845} a^{4} + \frac{5632223752}{25963647845} a^{3} - \frac{10642405941}{25963647845} a^{2} + \frac{10533774054}{25963647845} a - \frac{7512480521}{25963647845}$, $\frac{1}{25963647845} a^{17} - \frac{2176}{25963647845} a^{13} - \frac{836737}{5192729569} a^{12} - \frac{69632}{25963647845} a^{11} - \frac{5809768}{25963647845} a^{10} - \frac{191488}{5192729569} a^{9} - \frac{6823897502}{25963647845} a^{8} - \frac{6684672}{25963647845} a^{7} + \frac{7363997608}{25963647845} a^{6} - \frac{23396352}{25963647845} a^{5} + \frac{6577926613}{25963647845} a^{4} + \frac{5736524203}{25963647845} a^{3} + \frac{1894740309}{5192729569} a^{2} - \frac{8618145266}{25963647845} a - \frac{11003350412}{25963647845}$
Class group and class number
$C_{2}\times C_{2}\times C_{2774}$, which has order $11096$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), \(\Q(\zeta_{9})^+\), 6.0.96702579.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |