Normalized defining polynomial
\( x^{18} - 6 x^{17} + 3 x^{16} + 55 x^{15} - 111 x^{14} - 99 x^{13} + 525 x^{12} - 600 x^{11} - 732 x^{10} + 2877 x^{9} - 510 x^{8} - 2421 x^{7} + 8909 x^{6} + 9540 x^{5} + 5868 x^{4} + 20930 x^{3} + 37548 x^{2} + 26412 x + 6412 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-347441285409720187500000000=-\,2^{8}\cdot 3^{33}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10} a^{15} - \frac{2}{5} a^{14} - \frac{3}{10} a^{13} - \frac{1}{2} a^{12} - \frac{3}{10} a^{11} + \frac{3}{10} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{110} a^{16} - \frac{2}{55} a^{15} - \frac{43}{110} a^{14} - \frac{1}{2} a^{13} + \frac{27}{110} a^{12} + \frac{43}{110} a^{11} + \frac{5}{22} a^{10} - \frac{3}{55} a^{9} - \frac{1}{5} a^{8} - \frac{19}{110} a^{7} + \frac{12}{55} a^{6} + \frac{21}{110} a^{5} + \frac{53}{110} a^{4} + \frac{2}{55} a^{3} - \frac{27}{55} a^{2} + \frac{6}{55} a - \frac{2}{11}$, $\frac{1}{43936500400696524405080739427630030} a^{17} + \frac{79732797925144928317182346670479}{21968250200348262202540369713815015} a^{16} - \frac{34200552690301801845355600475997}{828990573598047630284542253351510} a^{15} - \frac{2723577741929621764140107156919583}{6276642914385217772154391346804290} a^{14} + \frac{15663929134497662970108436517425027}{43936500400696524405080739427630030} a^{13} - \frac{5706873803150426216670147317728433}{43936500400696524405080739427630030} a^{12} + \frac{15436039382602339115168408079071481}{43936500400696524405080739427630030} a^{11} + \frac{2465827170674187594048066058017752}{21968250200348262202540369713815015} a^{10} - \frac{1346770206798524287928177820184186}{3138321457192608886077195673402145} a^{9} + \frac{2586157390460335344282776752456061}{6276642914385217772154391346804290} a^{8} + \frac{529764511551650746630041764547598}{21968250200348262202540369713815015} a^{7} - \frac{26687206956512095437489775223491}{3994227309154229491370976311602730} a^{6} - \frac{4306535001507927583376847068629729}{8787300080139304881016147885526006} a^{5} + \frac{6860257702284071431718494177305}{4393650040069652440508073942763003} a^{4} - \frac{3922469322157022108603014920979793}{21968250200348262202540369713815015} a^{3} - \frac{13075748998210991180050781812226}{47447624622782423763586111692905} a^{2} + \frac{4159195684146670700990017138877347}{21968250200348262202540369713815015} a + \frac{201354900332502481544856951379627}{627664291438521777215439134680429}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{235403268965567448}{88672878506237415565} a^{17} + \frac{312155967721532700}{17734575701247483113} a^{16} - \frac{63622824581561081}{3346146358725940210} a^{15} - \frac{340600955506956054}{2533510814463926159} a^{14} + \frac{67493868125401093809}{177345757012474831130} a^{13} + \frac{4263753416308651479}{177345757012474831130} a^{12} - \frac{252054652920248807781}{177345757012474831130} a^{11} + \frac{88911304120885300863}{35469151402494966226} a^{10} + \frac{9827630880993184873}{25335108144639261590} a^{9} - \frac{101114838003981953349}{12667554072319630795} a^{8} + \frac{572813303129619715173}{88672878506237415565} a^{7} + \frac{441681896277411590271}{177345757012474831130} a^{6} - \frac{453270569357945815146}{17734575701247483113} a^{5} - \frac{1612793907017531308113}{177345757012474831130} a^{4} - \frac{1649253164175097744563}{177345757012474831130} a^{3} - \frac{9595977353706646194}{191518096125782755} a^{2} - \frac{1210321047248291524536}{17734575701247483113} a - \frac{328384289569839115451}{12667554072319630795} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1517059.6926500278 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.6075.2 x3, 6.0.110716875.2, 9.3.3587226750000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |