Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 234 x^{14} - 462 x^{13} + 1144 x^{12} - 3120 x^{11} + 6516 x^{10} - 9414 x^{9} + 7506 x^{8} + 1110 x^{7} - 4961 x^{6} - 3567 x^{5} + 15117 x^{4} - 16614 x^{3} + 972 x^{2} + 5616 x + 1728 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-346526094527773303165120969443=-\,3^{9}\cdot 127^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{3}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{5} + \frac{5}{24} a^{4} - \frac{7}{24} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{8} a^{5} - \frac{1}{12} a^{4} - \frac{1}{24} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{144} a^{12} + \frac{1}{72} a^{10} + \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{11}{144} a^{6} + \frac{1}{6} a^{5} - \frac{13}{72} a^{4} - \frac{5}{48} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{720} a^{13} + \frac{1}{720} a^{12} + \frac{1}{90} a^{11} + \frac{1}{144} a^{10} - \frac{7}{240} a^{9} + \frac{1}{120} a^{8} + \frac{59}{720} a^{7} - \frac{49}{720} a^{6} - \frac{8}{45} a^{5} + \frac{163}{720} a^{4} + \frac{29}{80} a^{3} + \frac{9}{40} a^{2} - \frac{1}{4} a - \frac{1}{5}$, $\frac{1}{1440} a^{14} - \frac{1}{1440} a^{13} - \frac{1}{360} a^{12} + \frac{19}{1440} a^{11} + \frac{1}{160} a^{10} + \frac{1}{30} a^{9} + \frac{47}{1440} a^{8} + \frac{13}{1440} a^{7} - \frac{1}{18} a^{6} - \frac{331}{1440} a^{5} - \frac{11}{96} a^{4} - \frac{1}{8} a^{3} + \frac{29}{60} a^{2} + \frac{3}{20} a + \frac{1}{5}$, $\frac{1}{1440} a^{15} - \frac{1}{1440} a^{13} - \frac{1}{1440} a^{12} - \frac{23}{1440} a^{10} - \frac{49}{1440} a^{9} - \frac{1}{40} a^{8} - \frac{71}{1440} a^{7} + \frac{13}{1440} a^{6} - \frac{3}{40} a^{5} - \frac{73}{1440} a^{4} + \frac{5}{24} a^{3} + \frac{1}{12} a^{2} + \frac{7}{20} a - \frac{1}{5}$, $\frac{1}{72604800} a^{16} - \frac{1}{9075600} a^{15} + \frac{4871}{18151200} a^{14} - \frac{2213}{4537800} a^{13} - \frac{85661}{36302400} a^{12} + \frac{148169}{9075600} a^{11} + \frac{6851}{806720} a^{10} + \frac{1099963}{36302400} a^{9} + \frac{62981}{2268900} a^{8} + \frac{663637}{9075600} a^{7} - \frac{2263531}{36302400} a^{6} - \frac{1077863}{9075600} a^{5} - \frac{1119031}{72604800} a^{4} - \frac{279827}{806720} a^{3} + \frac{141809}{2016800} a^{2} - \frac{28269}{100840} a - \frac{11311}{126050}$, $\frac{1}{84439382400} a^{17} + \frac{191}{28146460800} a^{16} + \frac{161641}{5277461400} a^{15} + \frac{18418}{73298075} a^{14} - \frac{5210461}{8443938240} a^{13} + \frac{9208361}{8443938240} a^{12} + \frac{622240361}{42219691200} a^{11} + \frac{25950229}{21109845600} a^{10} - \frac{1672149791}{42219691200} a^{9} - \frac{59820427}{2345538400} a^{8} + \frac{2802394397}{42219691200} a^{7} + \frac{2078859827}{42219691200} a^{6} + \frac{91878497}{16887876480} a^{5} + \frac{2282799959}{84439382400} a^{4} - \frac{540244977}{4691076800} a^{3} - \frac{149715013}{7036615200} a^{2} + \frac{8790991}{586384600} a - \frac{4983461}{146596150}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3082697}{8443938240} a^{17} - \frac{52405849}{16887876480} a^{16} + \frac{1519711}{117276920} a^{15} - \frac{29658545}{844393824} a^{14} + \frac{35824051}{469107680} a^{13} - \frac{256569079}{1688787648} a^{12} + \frac{1630219579}{4221969120} a^{11} - \frac{8721159601}{8443938240} a^{10} + \frac{5909363503}{2814646080} a^{9} - \frac{6392463559}{2110984560} a^{8} + \frac{1143294423}{469107680} a^{7} + \frac{681156587}{8443938240} a^{6} - \frac{7572937711}{8443938240} a^{5} - \frac{2127653781}{1876430720} a^{4} + \frac{13844535881}{2814646080} a^{3} - \frac{2509404233}{469107680} a^{2} + \frac{73307541}{117276920} a + \frac{29234671}{29319230} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 534990510.048 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.48387.1 x3, 3.3.16129.1, 6.0.7023905307.1, 6.0.435483.1 x2, 6.0.7023905307.2, 9.3.113288568696603.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.435483.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $127$ | 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |