Normalized defining polynomial
\( x^{18} - 6 x^{16} + 9 x^{14} - 12 x^{13} - 24 x^{12} + 18 x^{11} + 153 x^{10} + 272 x^{9} + 234 x^{8} + 48 x^{7} - 63 x^{6} + 90 x^{4} + 78 x^{3} + 36 x^{2} + 12 x + 2 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3454279995636458717184=-\,2^{24}\cdot 3^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{968} a^{16} + \frac{3}{484} a^{15} + \frac{39}{968} a^{14} - \frac{49}{242} a^{13} + \frac{19}{121} a^{12} + \frac{13}{121} a^{11} + \frac{4}{121} a^{10} + \frac{89}{484} a^{9} - \frac{427}{968} a^{8} + \frac{35}{121} a^{7} + \frac{7}{968} a^{6} + \frac{95}{484} a^{5} + \frac{43}{242} a^{4} - \frac{81}{484} a^{3} - \frac{151}{484} a^{2} - \frac{36}{121} a + \frac{215}{484}$, $\frac{1}{7198395680432} a^{17} - \frac{2410935369}{7198395680432} a^{16} + \frac{733397874885}{7198395680432} a^{15} - \frac{388285872589}{7198395680432} a^{14} - \frac{24876186311}{899799460054} a^{13} + \frac{218595852447}{1799598920108} a^{12} + \frac{27985266449}{163599901828} a^{11} + \frac{405805403687}{3599197840216} a^{10} + \frac{1383515802667}{7198395680432} a^{9} + \frac{2794148616073}{7198395680432} a^{8} + \frac{472039070115}{7198395680432} a^{7} - \frac{248479716789}{654399607312} a^{6} + \frac{901487758661}{3599197840216} a^{5} + \frac{5307868075}{327199803656} a^{4} + \frac{583575493}{7436359174} a^{3} - \frac{527597243059}{3599197840216} a^{2} + \frac{975830843743}{3599197840216} a + \frac{595908011731}{3599197840216}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2856751839}{725498456} a^{17} + \frac{164335428}{90687307} a^{16} + \frac{16556575941}{725498456} a^{15} - \frac{1906031817}{181374614} a^{14} - \frac{5581393125}{181374614} a^{13} + \frac{5571791808}{90687307} a^{12} + \frac{12060288981}{181374614} a^{11} - \frac{36941792367}{362749228} a^{10} - \frac{403613619179}{725498456} a^{9} - \frac{295391866617}{362749228} a^{8} - \frac{393338878167}{725498456} a^{7} + \frac{24369573303}{362749228} a^{6} + \frac{20184518457}{90687307} a^{5} - \frac{37171894299}{362749228} a^{4} - \frac{112006295847}{362749228} a^{3} - \frac{29703193515}{181374614} a^{2} - \frac{22846859823}{362749228} a - \frac{1505308729}{90687307} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21530.848473016555 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.324.1 x3, 3.1.108.1, 6.0.186624.1, 6.0.419904.2, 9.1.14693280768.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 3 | Data not computed | ||||||