Normalized defining polynomial
\( x^{18} - 3 x^{17} + 12 x^{16} - 59 x^{15} + 165 x^{14} - 525 x^{13} + 943 x^{12} - 2742 x^{11} + 6411 x^{10} - 2941 x^{9} + 15204 x^{8} - 9576 x^{7} + 17236 x^{6} - 14751 x^{5} + 18666 x^{4} - 12948 x^{3} + 8751 x^{2} - 2958 x + 841 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-342118966051435975575810048=-\,2^{12}\cdot 3^{21}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{153} a^{15} - \frac{20}{153} a^{14} - \frac{5}{153} a^{13} + \frac{25}{153} a^{12} + \frac{5}{51} a^{11} - \frac{10}{153} a^{10} + \frac{1}{9} a^{9} + \frac{14}{153} a^{8} + \frac{4}{51} a^{7} - \frac{1}{3} a^{6} + \frac{43}{153} a^{5} - \frac{1}{9} a^{4} - \frac{70}{153} a^{3} - \frac{38}{153} a^{2} - \frac{26}{153}$, $\frac{1}{11180658753} a^{16} - \frac{331150}{219228603} a^{15} + \frac{273915289}{3726886251} a^{14} + \frac{185435884}{1242295417} a^{13} - \frac{1762173925}{11180658753} a^{12} - \frac{1833061600}{11180658753} a^{11} + \frac{77541870}{1242295417} a^{10} - \frac{94280437}{3726886251} a^{9} + \frac{446087063}{1016423523} a^{8} + \frac{116390549}{338807841} a^{7} + \frac{2331508852}{11180658753} a^{6} - \frac{268456245}{1242295417} a^{5} + \frac{1767534793}{11180658753} a^{4} - \frac{1806799909}{11180658753} a^{3} - \frac{371907652}{11180658753} a^{2} - \frac{2272054106}{11180658753} a + \frac{105493009}{385539957}$, $\frac{1}{6458363231915605929300657} a^{17} - \frac{83558462500672}{6458363231915605929300657} a^{16} - \frac{11381840411499424040587}{6458363231915605929300657} a^{15} - \frac{14229403671007172651161}{6458363231915605929300657} a^{14} - \frac{200085423191136531311765}{6458363231915605929300657} a^{13} - \frac{727835857021232862329755}{6458363231915605929300657} a^{12} - \frac{334699055794728388645325}{6458363231915605929300657} a^{11} + \frac{345155064364914747445813}{6458363231915605929300657} a^{10} - \frac{424271221817710123480666}{6458363231915605929300657} a^{9} + \frac{11176217522286246765017}{65235992241571777063643} a^{8} - \frac{1636122685615172752726826}{6458363231915605929300657} a^{7} - \frac{1461475335556125577684864}{6458363231915605929300657} a^{6} - \frac{730451007236127219810784}{2152787743971868643100219} a^{5} - \frac{681535596565758066515183}{2152787743971868643100219} a^{4} + \frac{2739394744163293016077417}{6458363231915605929300657} a^{3} + \frac{1371304526971916339375425}{6458363231915605929300657} a^{2} + \frac{377207747493085874474194}{6458363231915605929300657} a - \frac{627631974832699821755}{24744686712320329231037}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{306210358999066}{854325262135400151} a^{17} + \frac{908113657487209}{854325262135400151} a^{16} - \frac{3733314262640398}{854325262135400151} a^{15} + \frac{18166872036769294}{854325262135400151} a^{14} - \frac{16934685436550700}{284775087378466717} a^{13} + \frac{5643259710259999}{29459491797772419} a^{12} - \frac{98315842590947876}{284775087378466717} a^{11} + \frac{866801074421093302}{854325262135400151} a^{10} - \frac{1987506605054504878}{854325262135400151} a^{9} + \frac{1013457462654751877}{854325262135400151} a^{8} - \frac{5036062073861633680}{854325262135400151} a^{7} + \frac{2629360200861283346}{854325262135400151} a^{6} - \frac{2030263631941873688}{284775087378466717} a^{5} + \frac{4436535288094819417}{854325262135400151} a^{4} - \frac{6263447082297500600}{854325262135400151} a^{3} + \frac{67873116873664220}{16751475728145101} a^{2} - \frac{3172972347415155970}{854325262135400151} a + \frac{12520968744741790}{9819830599257473} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 188948.15601729616 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.3559645040832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $41$ | 41.6.4.2 | $x^{6} - 41 x^{3} + 20172$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 41.6.4.2 | $x^{6} - 41 x^{3} + 20172$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |