Normalized defining polynomial
\( x^{18} - 3 x^{17} + 87 x^{16} - 256 x^{15} + 3117 x^{14} - 8670 x^{13} + 53789 x^{12} - 105270 x^{11} + 427959 x^{10} - 112362 x^{9} + 3866553 x^{8} - 5879268 x^{7} + 40584179 x^{6} - 51988584 x^{5} + 239214930 x^{4} - 215794195 x^{3} + 606840420 x^{2} - 268220532 x + 707555512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34087453954147523343197977587258425847=-\,3^{24}\cdot 11^{9}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1287=3^{2}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1287}(1,·)$, $\chi_{1287}(133,·)$, $\chi_{1287}(10,·)$, $\chi_{1287}(142,·)$, $\chi_{1287}(529,·)$, $\chi_{1287}(472,·)$, $\chi_{1287}(868,·)$, $\chi_{1287}(859,·)$, $\chi_{1287}(991,·)$, $\chi_{1287}(100,·)$, $\chi_{1287}(1000,·)$, $\chi_{1287}(43,·)$, $\chi_{1287}(430,·)$, $\chi_{1287}(562,·)$, $\chi_{1287}(439,·)$, $\chi_{1287}(901,·)$, $\chi_{1287}(571,·)$, $\chi_{1287}(958,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{1228} a^{14} + \frac{58}{307} a^{13} + \frac{263}{1228} a^{12} - \frac{71}{307} a^{11} + \frac{133}{1228} a^{10} - \frac{41}{614} a^{9} - \frac{17}{1228} a^{8} + \frac{26}{307} a^{7} + \frac{201}{1228} a^{6} + \frac{261}{614} a^{5} - \frac{111}{1228} a^{4} - \frac{122}{307} a^{3} - \frac{97}{1228} a^{2} + \frac{165}{614} a - \frac{20}{307}$, $\frac{1}{126484} a^{15} + \frac{11}{63242} a^{14} - \frac{16529}{126484} a^{13} - \frac{6664}{31621} a^{12} - \frac{15135}{126484} a^{11} - \frac{3626}{31621} a^{10} - \frac{15953}{126484} a^{9} + \frac{7363}{63242} a^{8} + \frac{3535}{126484} a^{7} - \frac{21765}{63242} a^{6} + \frac{47453}{126484} a^{5} + \frac{7087}{31621} a^{4} + \frac{28089}{126484} a^{3} - \frac{4079}{63242} a^{2} + \frac{30087}{63242} a + \frac{1744}{31621}$, $\frac{1}{126484} a^{16} - \frac{9}{63242} a^{14} - \frac{10317}{63242} a^{13} - \frac{9189}{63242} a^{12} - \frac{4483}{31621} a^{11} - \frac{7363}{31621} a^{10} - \frac{8013}{63242} a^{9} + \frac{5767}{31621} a^{8} + \frac{472}{31621} a^{7} - \frac{1458}{31621} a^{6} + \frac{3441}{31621} a^{5} - \frac{7787}{63242} a^{4} - \frac{1277}{63242} a^{3} - \frac{17541}{126484} a^{2} - \frac{4479}{63242} a + \frac{1184}{31621}$, $\frac{1}{596875643430861044286050885344159221301254180385886887353603884} a^{17} + \frac{666669602098984318176811938067350293679181458784750036139}{596875643430861044286050885344159221301254180385886887353603884} a^{16} - \frac{340617189827468930740133581792909507805381204428950800275}{596875643430861044286050885344159221301254180385886887353603884} a^{15} + \frac{160697040281150927015676555521286354055318402501513432465401}{596875643430861044286050885344159221301254180385886887353603884} a^{14} - \frac{97591590363854379665880079876908817299361408857604937373699865}{596875643430861044286050885344159221301254180385886887353603884} a^{13} + \frac{136741827792781853245154387528276190375064926578327258656894685}{596875643430861044286050885344159221301254180385886887353603884} a^{12} - \frac{119255100592800339440967262155095799032295076850227418615624275}{596875643430861044286050885344159221301254180385886887353603884} a^{11} - \frac{132399560023191206417428222205311640855740212304197797102224583}{596875643430861044286050885344159221301254180385886887353603884} a^{10} + \frac{56402684393667774664842576328057778760329707413744176672861277}{596875643430861044286050885344159221301254180385886887353603884} a^{9} + \frac{134575901404030396000375355586394242720434198219995875205076003}{596875643430861044286050885344159221301254180385886887353603884} a^{8} - \frac{133347471800280948982480588457674577952403474971311863717796171}{596875643430861044286050885344159221301254180385886887353603884} a^{7} + \frac{25975709021542414558668778348035979760863565078493071490441975}{596875643430861044286050885344159221301254180385886887353603884} a^{6} + \frac{277239986030750125999987368793627326883494706542442798649399717}{596875643430861044286050885344159221301254180385886887353603884} a^{5} - \frac{289481642559450717994170206143282709546171808486836450316046323}{596875643430861044286050885344159221301254180385886887353603884} a^{4} + \frac{66306945538578131790530509032963981205095770892960477231750979}{149218910857715261071512721336039805325313545096471721838400971} a^{3} + \frac{134699213455775201061336903055724585305534610878990985892508307}{298437821715430522143025442672079610650627090192943443676801942} a^{2} + \frac{81946407115916519484906154958543811598555852049899874183798935}{298437821715430522143025442672079610650627090192943443676801942} a + \frac{801393923135409718837929427141150738249392267026693361150187}{2815451148258778510783258893132826515571953681065504185630207}$
Class group and class number
$C_{2}\times C_{36}\times C_{16380}$, which has order $1179360$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.1364448253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-143}) \), \(\Q(\zeta_{9})^+\), 3.3.13689.2, 3.3.169.1, 3.3.13689.1, 6.0.19185722127.10, 6.0.3242387039463.4, 6.0.494190983.1, 6.0.3242387039463.3, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||