Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 372 x^{14} - 588 x^{13} + 444 x^{12} + 534 x^{11} - 1913 x^{10} + 1953 x^{9} + 513 x^{8} - 4074 x^{7} + 3354 x^{6} + 2694 x^{5} - 3036 x^{4} - 2226 x^{3} + 1579 x^{2} + 513 x + 81 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3395486793483559622619136=-\,2^{12}\cdot 211^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{6} a$, $\frac{1}{84} a^{10} - \frac{5}{84} a^{9} + \frac{1}{28} a^{8} + \frac{3}{14} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{2}{7} a^{3} - \frac{1}{12} a^{2} + \frac{29}{84} a - \frac{1}{28}$, $\frac{1}{84} a^{11} + \frac{1}{14} a^{9} - \frac{3}{28} a^{8} - \frac{5}{28} a^{7} - \frac{13}{28} a^{4} - \frac{13}{84} a^{3} - \frac{1}{14} a^{2} - \frac{1}{7} a - \frac{5}{28}$, $\frac{1}{84} a^{12} - \frac{1}{12} a^{9} + \frac{3}{28} a^{8} + \frac{3}{14} a^{7} + \frac{1}{28} a^{5} + \frac{29}{84} a^{4} + \frac{3}{14} a^{3} - \frac{1}{7} a^{2} - \frac{5}{12} a - \frac{2}{7}$, $\frac{1}{84} a^{13} + \frac{1}{42} a^{9} - \frac{1}{28} a^{8} - \frac{3}{14} a^{6} - \frac{17}{42} a^{5} + \frac{13}{28} a^{4} - \frac{1}{7} a^{3} - \frac{1}{2} a^{2} + \frac{25}{84} a + \frac{1}{4}$, $\frac{1}{1176} a^{14} - \frac{1}{168} a^{13} - \frac{1}{196} a^{12} + \frac{1}{1176} a^{11} - \frac{5}{1176} a^{10} + \frac{47}{588} a^{9} - \frac{1}{56} a^{8} + \frac{51}{392} a^{7} - \frac{97}{1176} a^{6} + \frac{5}{84} a^{5} + \frac{149}{392} a^{4} + \frac{425}{1176} a^{3} - \frac{5}{84} a^{2} + \frac{569}{1176} a + \frac{127}{392}$, $\frac{1}{1176} a^{15} + \frac{1}{1176} a^{13} + \frac{1}{1176} a^{12} + \frac{1}{588} a^{11} + \frac{1}{392} a^{10} - \frac{1}{24} a^{9} + \frac{2}{49} a^{8} + \frac{67}{588} a^{7} + \frac{1}{8} a^{6} + \frac{335}{1176} a^{5} + \frac{61}{147} a^{4} + \frac{67}{168} a^{3} + \frac{185}{392} a^{2} + \frac{257}{588} a - \frac{25}{56}$, $\frac{1}{102312} a^{16} - \frac{1}{12789} a^{15} - \frac{17}{102312} a^{14} + \frac{37}{14616} a^{13} + \frac{74}{12789} a^{12} + \frac{25}{102312} a^{11} - \frac{179}{102312} a^{10} - \frac{367}{51156} a^{9} + \frac{6511}{51156} a^{8} + \frac{6065}{102312} a^{7} - \frac{15139}{102312} a^{6} - \frac{14543}{51156} a^{5} + \frac{11297}{102312} a^{4} - \frac{9727}{102312} a^{3} - \frac{22865}{51156} a^{2} + \frac{47435}{102312} a + \frac{655}{5684}$, $\frac{1}{23224824} a^{17} + \frac{5}{1105944} a^{16} - \frac{835}{3870804} a^{15} - \frac{103}{3870804} a^{14} + \frac{3467}{1935402} a^{13} + \frac{3169}{967701} a^{12} + \frac{1291}{322567} a^{11} + \frac{13283}{3870804} a^{10} - \frac{1436429}{23224824} a^{9} - \frac{1611839}{7741608} a^{8} + \frac{164914}{967701} a^{7} + \frac{261049}{3870804} a^{6} + \frac{109859}{3870804} a^{5} - \frac{496345}{3870804} a^{4} - \frac{477}{5684} a^{3} - \frac{319915}{1935402} a^{2} - \frac{8527697}{23224824} a - \frac{155513}{2580536}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226324.427557 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-211}) \), 3.1.211.1 x3, 6.0.9393931.1, 9.1.126855644224.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 211 | Data not computed | ||||||