Normalized defining polynomial
\( x^{18} - 46827 x^{12} + 3634057251 x^{6} + 747377296875 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3372451021135065952308015612910739392504066879488=-\,2^{12}\cdot 3^{37}\cdot 11^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $496.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{11} a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{363} a^{6}$, $\frac{1}{1815} a^{7} - \frac{2}{5} a$, $\frac{1}{1815} a^{8} - \frac{2}{5} a^{2}$, $\frac{1}{39930} a^{9} - \frac{1}{726} a^{6} + \frac{3}{110} a^{3} - \frac{1}{2}$, $\frac{1}{119790} a^{10} - \frac{1}{3630} a^{7} + \frac{13}{330} a^{4} - \frac{3}{10} a$, $\frac{1}{119790} a^{11} - \frac{1}{3630} a^{8} + \frac{13}{330} a^{5} - \frac{3}{10} a^{2}$, $\frac{1}{12668271660} a^{12} - \frac{2526}{2908235} a^{6} - \frac{1}{22} a^{3} + \frac{3673}{19228}$, $\frac{1}{38004814980} a^{13} + \frac{1}{119790} a^{9} + \frac{2036}{26174115} a^{7} - \frac{1}{726} a^{6} + \frac{1}{33} a^{5} - \frac{1}{22} a^{4} + \frac{13}{330} a^{3} - \frac{58547}{288420} a - \frac{1}{2}$, $\frac{1}{190024074900} a^{14} - \frac{26806}{130870575} a^{8} - \frac{1}{22} a^{5} - \frac{116231}{1442100} a^{2}$, $\frac{1}{10451324119500} a^{15} + \frac{45299}{7197881625} a^{9} - \frac{1}{726} a^{6} - \frac{693071}{79315500} a^{3}$, $\frac{1}{52256620597500} a^{16} - \frac{74876}{35989408125} a^{10} - \frac{1}{3630} a^{7} + \frac{2492943}{132192500} a^{4} + \frac{1}{5} a$, $\frac{1}{261283102987500} a^{17} - \frac{74876}{179947040625} a^{11} - \frac{1}{3630} a^{8} - \frac{9524557}{660962500} a^{5} + \frac{1}{5} a^{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{6}\times C_{12}\times C_{12}\times C_{72}\times C_{72}$, which has order $1289945088$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{61118854500} a^{15} - \frac{181}{252557250} a^{9} + \frac{83937}{1391500} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795492382.7560022 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |