Normalized defining polynomial
\( x^{18} + 474 x^{16} + 80343 x^{14} + 6224884 x^{12} + 246937647 x^{10} + 5138452458 x^{8} + 53819444489 x^{6} + 260620415400 x^{4} + 463401439632 x^{2} + 2019487744 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33703610765963698533467381091270298700673024=-\,2^{12}\cdot 3^{24}\cdot 79^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $261.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{632} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{2528} a^{7} - \frac{1}{16} a^{5} + \frac{7}{32} a^{3} + \frac{3}{8} a$, $\frac{1}{5056} a^{8} - \frac{1}{5056} a^{7} + \frac{1}{2528} a^{6} + \frac{1}{32} a^{5} + \frac{7}{64} a^{4} + \frac{9}{64} a^{3} + \frac{3}{16} a^{2} + \frac{1}{16} a$, $\frac{1}{10112} a^{9} + \frac{1}{10112} a^{7} + \frac{9}{128} a^{5} - \frac{1}{8} a^{4} - \frac{11}{128} a^{3} + \frac{1}{8} a^{2} - \frac{7}{32} a - \frac{1}{2}$, $\frac{1}{20224} a^{10} + \frac{1}{20224} a^{8} - \frac{9}{20224} a^{6} - \frac{27}{256} a^{4} - \frac{7}{64} a^{2}$, $\frac{1}{3195392} a^{11} - \frac{1}{40448} a^{10} - \frac{1}{40448} a^{9} - \frac{1}{40448} a^{8} - \frac{7}{40448} a^{7} + \frac{9}{40448} a^{6} + \frac{4277}{40448} a^{5} + \frac{27}{512} a^{4} - \frac{25}{128} a^{3} + \frac{7}{128} a^{2} - \frac{1}{4} a$, $\frac{1}{3195392} a^{12} + \frac{1}{20224} a^{8} - \frac{1}{5056} a^{7} - \frac{1}{10112} a^{6} - \frac{3}{32} a^{5} - \frac{7}{512} a^{4} + \frac{1}{64} a^{3} - \frac{15}{128} a^{2} - \frac{3}{16} a$, $\frac{1}{6390784} a^{13} + \frac{1}{40448} a^{9} + \frac{1}{20224} a^{7} + \frac{41}{1024} a^{5} + \frac{15}{256} a^{3} + \frac{15}{32} a - \frac{1}{2}$, $\frac{1}{434573312} a^{14} - \frac{3}{108643328} a^{12} + \frac{9}{2750464} a^{10} + \frac{15}{1375232} a^{8} - \frac{1081}{5500928} a^{6} - \frac{1}{8} a^{5} - \frac{227}{2176} a^{4} - \frac{1}{8} a^{3} + \frac{319}{4352} a^{2} + \frac{1}{4} a - \frac{5}{17}$, $\frac{1}{869146624} a^{15} - \frac{1}{869146624} a^{14} - \frac{3}{217286656} a^{13} - \frac{31}{217286656} a^{12} + \frac{31}{434573312} a^{11} + \frac{127}{5500928} a^{10} + \frac{83}{2750464} a^{9} + \frac{257}{2750464} a^{8} + \frac{823}{11001856} a^{7} + \frac{1353}{11001856} a^{6} - \frac{82463}{687616} a^{5} + \frac{1061}{17408} a^{4} - \frac{1449}{8704} a^{3} - \frac{1645}{8704} a^{2} - \frac{131}{544} a - \frac{6}{17}$, $\frac{1}{60159344163144728576} a^{16} + \frac{153736189}{761510685609426944} a^{14} + \frac{48223798439}{380755342804713472} a^{12} + \frac{3101291757205}{380755342804713472} a^{10} - \frac{371567124971}{9639375767207936} a^{8} + \frac{4065752208855}{9639375767207936} a^{6} - \frac{53029707100143}{1204921970900992} a^{4} - \frac{1}{4} a^{3} - \frac{1725082204015}{7626088423424} a^{2} + \frac{1}{4} a - \frac{2862869353}{29789407904}$, $\frac{1}{120318688326289457152} a^{17} - \frac{1}{120318688326289457152} a^{16} + \frac{153736189}{1523021371218853888} a^{15} - \frac{153736189}{1523021371218853888} a^{14} + \frac{48223798439}{761510685609426944} a^{13} + \frac{70933833177}{761510685609426944} a^{12} + \frac{3193335189}{761510685609426944} a^{11} + \frac{15725614038123}{761510685609426944} a^{10} + \frac{105063401493}{19278751534415872} a^{9} - \frac{581693927957}{19278751534415872} a^{8} - \frac{223922529321}{19278751534415872} a^{7} + \frac{2130444635177}{19278751534415872} a^{6} - \frac{33309119067695}{2409843941801984} a^{5} + \frac{229531948931343}{2409843941801984} a^{4} + \frac{3517853587089}{15252176846848} a^{3} + \frac{473927072047}{15252176846848} a^{2} - \frac{12172059323}{59578815808} a + \frac{2862869353}{59578815808}$
Class group and class number
$C_{2}\times C_{2}\times C_{28}\times C_{169260}$, which has order $18957120$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32038743174.66701 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 3.3.505521.1, 3.3.316.1, 6.0.7888624.1, 6.0.20188567033839.2, 9.9.653167654112852807616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| $79$ | 79.6.5.6 | $x^{6} + 2528$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 79.12.10.3 | $x^{12} - 553 x^{6} + 505521$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |