Normalized defining polynomial
\( x^{18} + 474 x^{16} + 80343 x^{14} + 6224884 x^{12} + 246937647 x^{10} + 5138452458 x^{8} + \cdots + 2019487744 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-33703610765963698533467381091270298700673024\)
\(\medspace = -\,2^{12}\cdot 3^{24}\cdot 79^{15}\)
|
| |
| Root discriminant: | \(261.94\) |
| |
| Galois root discriminant: | $2\cdot 3^{4/3}79^{5/6}\approx 330.0255610451065$ | ||
| Ramified primes: |
\(2\), \(3\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-79}) \) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{256}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{632}a^{6}-\frac{1}{8}a^{5}-\frac{1}{8}a^{4}+\frac{1}{8}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{2528}a^{7}-\frac{1}{16}a^{5}+\frac{7}{32}a^{3}+\frac{3}{8}a$, $\frac{1}{5056}a^{8}-\frac{1}{5056}a^{7}+\frac{1}{2528}a^{6}+\frac{1}{32}a^{5}+\frac{7}{64}a^{4}+\frac{9}{64}a^{3}+\frac{3}{16}a^{2}+\frac{1}{16}a$, $\frac{1}{10112}a^{9}+\frac{1}{10112}a^{7}+\frac{9}{128}a^{5}-\frac{1}{8}a^{4}-\frac{11}{128}a^{3}+\frac{1}{8}a^{2}-\frac{7}{32}a-\frac{1}{2}$, $\frac{1}{20224}a^{10}+\frac{1}{20224}a^{8}-\frac{9}{20224}a^{6}-\frac{27}{256}a^{4}-\frac{7}{64}a^{2}$, $\frac{1}{3195392}a^{11}-\frac{1}{40448}a^{10}-\frac{1}{40448}a^{9}-\frac{1}{40448}a^{8}-\frac{7}{40448}a^{7}+\frac{9}{40448}a^{6}+\frac{4277}{40448}a^{5}+\frac{27}{512}a^{4}-\frac{25}{128}a^{3}+\frac{7}{128}a^{2}-\frac{1}{4}a$, $\frac{1}{3195392}a^{12}+\frac{1}{20224}a^{8}-\frac{1}{5056}a^{7}-\frac{1}{10112}a^{6}-\frac{3}{32}a^{5}-\frac{7}{512}a^{4}+\frac{1}{64}a^{3}-\frac{15}{128}a^{2}-\frac{3}{16}a$, $\frac{1}{6390784}a^{13}+\frac{1}{40448}a^{9}+\frac{1}{20224}a^{7}+\frac{41}{1024}a^{5}+\frac{15}{256}a^{3}+\frac{15}{32}a-\frac{1}{2}$, $\frac{1}{434573312}a^{14}-\frac{3}{108643328}a^{12}+\frac{9}{2750464}a^{10}+\frac{15}{1375232}a^{8}-\frac{1081}{5500928}a^{6}-\frac{1}{8}a^{5}-\frac{227}{2176}a^{4}-\frac{1}{8}a^{3}+\frac{319}{4352}a^{2}+\frac{1}{4}a-\frac{5}{17}$, $\frac{1}{869146624}a^{15}-\frac{1}{869146624}a^{14}-\frac{3}{217286656}a^{13}-\frac{31}{217286656}a^{12}+\frac{31}{434573312}a^{11}+\frac{127}{5500928}a^{10}+\frac{83}{2750464}a^{9}+\frac{257}{2750464}a^{8}+\frac{823}{11001856}a^{7}+\frac{1353}{11001856}a^{6}-\frac{82463}{687616}a^{5}+\frac{1061}{17408}a^{4}-\frac{1449}{8704}a^{3}-\frac{1645}{8704}a^{2}-\frac{131}{544}a-\frac{6}{17}$, $\frac{1}{60\cdots 76}a^{16}+\frac{153736189}{76\cdots 44}a^{14}+\frac{48223798439}{38\cdots 72}a^{12}+\frac{3101291757205}{38\cdots 72}a^{10}-\frac{371567124971}{96\cdots 36}a^{8}+\frac{4065752208855}{96\cdots 36}a^{6}-\frac{53029707100143}{12\cdots 92}a^{4}-\frac{1}{4}a^{3}-\frac{1725082204015}{7626088423424}a^{2}+\frac{1}{4}a-\frac{2862869353}{29789407904}$, $\frac{1}{12\cdots 52}a^{17}-\frac{1}{12\cdots 52}a^{16}+\frac{153736189}{15\cdots 88}a^{15}-\frac{153736189}{15\cdots 88}a^{14}+\frac{48223798439}{76\cdots 44}a^{13}+\frac{70933833177}{76\cdots 44}a^{12}+\frac{3193335189}{76\cdots 44}a^{11}+\frac{15725614038123}{76\cdots 44}a^{10}+\frac{105063401493}{19\cdots 72}a^{9}-\frac{581693927957}{19\cdots 72}a^{8}-\frac{223922529321}{19\cdots 72}a^{7}+\frac{2130444635177}{19\cdots 72}a^{6}-\frac{33309119067695}{24\cdots 84}a^{5}+\frac{229531948931343}{24\cdots 84}a^{4}+\frac{3517853587089}{15252176846848}a^{3}+\frac{473927072047}{15252176846848}a^{2}-\frac{12172059323}{59578815808}a+\frac{2862869353}{59578815808}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{28}\times C_{169260}$, which has order $18957120$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{28}\times C_{169260}$, which has order $18957120$ (assuming GRH) |
| |
| Relative class number: | $1579760$ (assuming GRH) |
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{50386809}{65\cdots 28}a^{16}+\frac{297224613}{82\cdots 32}a^{14}+\frac{24448613583}{41\cdots 16}a^{12}+\frac{1795985428893}{41\cdots 16}a^{10}+\frac{1652733987885}{104775823556608}a^{8}+\frac{29528400529807}{104775823556608}a^{6}+\frac{28339980338601}{13096977944576}a^{4}+\frac{390418351929}{82892265472}a^{2}-\frac{1045415721}{323797912}$, $\frac{50386809}{65\cdots 28}a^{16}+\frac{297224613}{82\cdots 32}a^{14}+\frac{24448613583}{41\cdots 16}a^{12}+\frac{1795985428893}{41\cdots 16}a^{10}+\frac{1652733987885}{104775823556608}a^{8}+\frac{29528400529807}{104775823556608}a^{6}+\frac{28339980338601}{13096977944576}a^{4}+\frac{390418351929}{82892265472}a^{2}-\frac{1693011545}{323797912}$, $\frac{11108992819}{44\cdots 16}a^{16}+\frac{60832542895}{55\cdots 04}a^{14}+\frac{4385738389877}{27\cdots 52}a^{12}+\frac{254416270808871}{27\cdots 52}a^{10}+\frac{166998060698255}{70877762994176}a^{8}+\frac{19\cdots 29}{70877762994176}a^{6}+\frac{12\cdots 63}{8859720374272}a^{4}+\frac{13744516924235}{56074179584}a^{2}+\frac{297975921}{219039764}$, $\frac{120451908003}{37\cdots 36}a^{16}+\frac{678086844403}{47\cdots 84}a^{14}+\frac{51535727176621}{23\cdots 92}a^{12}+\frac{33\cdots 43}{23\cdots 92}a^{10}+\frac{26\cdots 63}{602460985450496}a^{8}+\frac{40\cdots 25}{602460985450496}a^{6}+\frac{36\cdots 27}{75307623181312}a^{4}+\frac{603354369151055}{476630526464}a^{2}+\frac{10285255711}{1861837994}$, $\frac{2402805989}{19\cdots 36}a^{16}+\frac{1046701570143}{19\cdots 36}a^{14}+\frac{76450631626829}{95\cdots 68}a^{12}+\frac{57593908931241}{12\cdots 92}a^{10}+\frac{31\cdots 31}{24\cdots 84}a^{8}+\frac{37\cdots 17}{24\cdots 84}a^{6}+\frac{312979943096053}{3813044211712}a^{4}+\frac{288142166035195}{1906522105856}a^{2}+\frac{4906357605}{7447351976}$, $\frac{358989449}{95\cdots 68}a^{16}+\frac{162252713915}{95\cdots 68}a^{14}+\frac{12592099637297}{47\cdots 84}a^{12}+\frac{10387784232013}{602460985450496}a^{10}+\frac{585651771981203}{12\cdots 92}a^{8}+\frac{48\cdots 01}{12\cdots 92}a^{6}-\frac{83870623169527}{1906522105856}a^{4}-\frac{542445962179321}{953261052928}a^{2}-\frac{5538255465187}{3723675988}$, $\frac{10954838739}{95\cdots 68}a^{16}+\frac{4749121790009}{95\cdots 68}a^{14}+\frac{343764507805995}{47\cdots 84}a^{12}+\frac{254464092099711}{602460985450496}a^{10}+\frac{13\cdots 77}{12\cdots 92}a^{8}+\frac{15\cdots 83}{12\cdots 92}a^{6}+\frac{12\cdots 71}{1906522105856}a^{4}+\frac{10\cdots 33}{953261052928}a^{2}+\frac{20193923567}{3723675988}$, $\frac{691679282051}{19\cdots 36}a^{16}+\frac{323969558549881}{19\cdots 36}a^{14}+\frac{26\cdots 63}{95\cdots 68}a^{12}+\frac{25\cdots 51}{12\cdots 92}a^{10}+\frac{18\cdots 97}{24\cdots 84}a^{8}+\frac{34\cdots 95}{24\cdots 84}a^{6}+\frac{43\cdots 75}{3813044211712}a^{4}+\frac{57\cdots 69}{1906522105856}a^{2}+\frac{9798611969411}{7447351976}$
|
| |
| Regulator: | \( 32038743174.66701 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 32038743174.66701 \cdot 18957120}{2\cdot\sqrt{33703610765963698533467381091270298700673024}}\cr\approx \mathstrut & 798.359384337643 \end{aligned}\] (assuming GRH)
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 3.3.505521.1, 3.3.316.1, 6.0.7888624.1, 6.0.20188567033839.2, 9.9.653167654112852807616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | 12.0.1669440466451705194787135164416.3 |
| Degree 18 sibling: | 18.0.27304191000274388685340663162548090086621184.1 |
| Minimal sibling: | 12.0.1669440466451705194787135164416.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{6}$ | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }^{6}$ | ${\href{/padicField/29.6.0.1}{6} }^{3}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{9}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
|
\(3\)
| 3.6.3.24a2.1 | $x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 32 x^{12} + 24 x^{11} + 63 x^{10} + 36 x^{9} + 90 x^{8} + 72 x^{7} + 109 x^{6} + 102 x^{5} + 96 x^{4} + 56 x^{3} + 84 x^{2} + 72 x + 35$ | $3$ | $6$ | $24$ | not computed | not computed |
|
\(79\)
| 79.1.6.5a1.5 | $x^{6} + 711$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 79.2.6.10a1.3 | $x^{12} + 468 x^{11} + 91278 x^{10} + 9498060 x^{9} + 556321095 x^{8} + 17408507688 x^{7} + 228535884324 x^{6} + 52225523064 x^{5} + 5006889855 x^{4} + 256447620 x^{3} + 7393518 x^{2} + 119570 x + 1203$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |