Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 44 x^{15} + 402 x^{14} - 1464 x^{13} + 7930 x^{12} - 22524 x^{11} + 104349 x^{10} - 243054 x^{9} + 1196652 x^{8} - 2104020 x^{7} + 10180097 x^{6} - 12952074 x^{5} + 57659838 x^{4} - 51315152 x^{3} + 191003796 x^{2} - 91799112 x + 265747256 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3368994499603041762677432832000000000=-\,2^{18}\cdot 3^{24}\cdot 5^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2340=2^{2}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2340}(1,·)$, $\chi_{2340}(841,·)$, $\chi_{2340}(139,·)$, $\chi_{2340}(781,·)$, $\chi_{2340}(79,·)$, $\chi_{2340}(1621,·)$, $\chi_{2340}(919,·)$, $\chi_{2340}(601,·)$, $\chi_{2340}(859,·)$, $\chi_{2340}(1699,·)$, $\chi_{2340}(1561,·)$, $\chi_{2340}(1381,·)$, $\chi_{2340}(679,·)$, $\chi_{2340}(1639,·)$, $\chi_{2340}(2161,·)$, $\chi_{2340}(1459,·)$, $\chi_{2340}(61,·)$, $\chi_{2340}(2239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{11} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{2967680392} a^{15} + \frac{87020491}{1483840196} a^{14} - \frac{143463739}{2967680392} a^{13} - \frac{111831945}{2967680392} a^{12} + \frac{86892797}{2967680392} a^{11} - \frac{62076069}{2967680392} a^{10} + \frac{55554895}{741920098} a^{9} - \frac{146744745}{2967680392} a^{8} - \frac{1272688349}{2967680392} a^{7} - \frac{360911719}{1483840196} a^{6} - \frac{133422171}{370960049} a^{5} + \frac{788828255}{2967680392} a^{4} + \frac{76776424}{370960049} a^{3} + \frac{577254763}{1483840196} a^{2} + \frac{233883269}{741920098} a + \frac{180916486}{370960049}$, $\frac{1}{5122216356592} a^{16} - \frac{1}{6811457921} a^{15} - \frac{6209605513}{640277044574} a^{14} + \frac{10079339635}{640277044574} a^{13} + \frac{40226629037}{2561108178296} a^{12} + \frac{19763582967}{640277044574} a^{11} + \frac{30317908513}{2561108178296} a^{10} - \frac{29953191947}{640277044574} a^{9} - \frac{513875740735}{5122216356592} a^{8} - \frac{145780869941}{320138522287} a^{7} - \frac{328780614001}{2561108178296} a^{6} + \frac{89716791738}{320138522287} a^{5} - \frac{1072085857303}{5122216356592} a^{4} + \frac{95396331029}{320138522287} a^{3} + \frac{60044801067}{1280554089148} a^{2} + \frac{191323352743}{640277044574} a - \frac{301018511709}{1280554089148}$, $\frac{1}{1176991062833215706321441821277327152} a^{17} - \frac{31107918899734171099}{73561941427075981645090113829832947} a^{16} + \frac{42809603893548134281844043}{294247765708303926580360455319331788} a^{15} + \frac{14527293390358109385822720403779417}{588495531416607853160720910638663576} a^{14} + \frac{9645962328134705142096712889321463}{294247765708303926580360455319331788} a^{13} - \frac{5320197251562044831007214727311081}{588495531416607853160720910638663576} a^{12} - \frac{8328357889285104189912375662392469}{147123882854151963290180227659665894} a^{11} - \frac{22816725139010778582849012303130355}{588495531416607853160720910638663576} a^{10} + \frac{38124093550129964542202976144332487}{1176991062833215706321441821277327152} a^{9} + \frac{14589260311965020828030360107271219}{147123882854151963290180227659665894} a^{8} + \frac{247089332413277005970326511678918913}{588495531416607853160720910638663576} a^{7} + \frac{176080340844213043150926239519783863}{588495531416607853160720910638663576} a^{6} + \frac{460931469293959988984579710608442631}{1176991062833215706321441821277327152} a^{5} + \frac{35600117516901253664012477300617027}{147123882854151963290180227659665894} a^{4} + \frac{20553628024077205828211993203927951}{73561941427075981645090113829832947} a^{3} + \frac{96280180751985255437228348389204337}{294247765708303926580360455319331788} a^{2} + \frac{34556034332882102722327139321021013}{294247765708303926580360455319331788} a + \frac{6752477403469664167174349166320349}{147123882854151963290180227659665894}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{36}\times C_{468}$, which has order $134784$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.1364448253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{9})^+\), 3.3.13689.2, 3.3.169.1, 3.3.13689.1, 6.0.52488000.1, 6.0.1499109768000.6, 6.0.228488000.1, 6.0.1499109768000.4, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||