Normalized defining polynomial
\( x^{18} - 3 x^{17} - 372 x^{16} + 2220 x^{15} + 48642 x^{14} - 446046 x^{13} - 2086968 x^{12} + 34431120 x^{11} - 33488187 x^{10} - 1049976215 x^{9} + 4500825492 x^{8} + 5096936940 x^{7} - 78281565936 x^{6} + 152818776720 x^{5} + 343019618880 x^{4} - 2247082834368 x^{3} + 4853863902720 x^{2} - 5257925494272 x + 2489858275328 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-336122542391918780239888468288923486473177906638848=-\,2^{12}\cdot 3^{30}\cdot 7^{9}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $641.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{6} + \frac{1}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{16} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{5} - \frac{1}{32} a^{4} + \frac{1}{16} a^{3}$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{9}{128} a^{5} - \frac{1}{8} a^{4} + \frac{1}{32} a^{3} - \frac{1}{4} a$, $\frac{1}{768} a^{10} - \frac{1}{768} a^{9} + \frac{1}{384} a^{8} + \frac{7}{384} a^{7} + \frac{3}{256} a^{6} - \frac{25}{768} a^{5} - \frac{1}{64} a^{4} + \frac{11}{192} a^{3} - \frac{1}{6} a^{2} + \frac{7}{24} a + \frac{1}{6}$, $\frac{1}{1536} a^{11} - \frac{1}{1536} a^{10} - \frac{1}{384} a^{9} + \frac{7}{768} a^{8} - \frac{1}{512} a^{7} - \frac{25}{1536} a^{6} + \frac{21}{256} a^{5} + \frac{35}{384} a^{4} - \frac{43}{192} a^{3} - \frac{5}{48} a^{2} - \frac{1}{24} a - \frac{1}{2}$, $\frac{1}{3072} a^{12} - \frac{1}{3072} a^{10} + \frac{1}{512} a^{9} - \frac{29}{3072} a^{8} - \frac{17}{768} a^{7} + \frac{41}{3072} a^{6} + \frac{83}{1536} a^{5} + \frac{23}{256} a^{4} - \frac{29}{384} a^{3} - \frac{11}{96} a^{2} - \frac{11}{48} a + \frac{5}{12}$, $\frac{1}{12288} a^{13} - \frac{1}{6144} a^{12} + \frac{1}{4096} a^{11} - \frac{1}{3072} a^{10} - \frac{25}{12288} a^{9} + \frac{5}{2048} a^{8} + \frac{293}{12288} a^{7} - \frac{35}{1536} a^{6} + \frac{15}{128} a^{5} - \frac{17}{192} a^{4} + \frac{49}{768} a^{3} - \frac{1}{32} a^{2} - \frac{13}{96} a + \frac{5}{24}$, $\frac{1}{24576} a^{14} - \frac{1}{24576} a^{13} + \frac{1}{24576} a^{12} - \frac{1}{24576} a^{11} + \frac{1}{8192} a^{10} - \frac{9}{8192} a^{9} + \frac{1}{8192} a^{8} - \frac{307}{24576} a^{7} + \frac{85}{3072} a^{6} - \frac{7}{384} a^{5} - \frac{163}{1536} a^{4} - \frac{223}{1536} a^{3} + \frac{1}{8} a^{2} + \frac{21}{64} a - \frac{11}{48}$, $\frac{1}{49152} a^{15} - \frac{1}{49152} a^{14} + \frac{1}{49152} a^{13} - \frac{1}{49152} a^{12} + \frac{1}{16384} a^{11} - \frac{9}{16384} a^{10} - \frac{63}{16384} a^{9} - \frac{307}{49152} a^{8} - \frac{155}{6144} a^{7} + \frac{17}{768} a^{6} + \frac{209}{3072} a^{5} + \frac{257}{3072} a^{4} + \frac{11}{64} a^{3} + \frac{5}{128} a^{2} - \frac{23}{96} a - \frac{1}{2}$, $\frac{1}{98304} a^{16} - \frac{1}{49152} a^{14} + \frac{1}{49152} a^{13} - \frac{11}{49152} a^{11} - \frac{5}{16384} a^{10} + \frac{67}{49152} a^{9} + \frac{367}{98304} a^{8} - \frac{243}{16384} a^{7} - \frac{7}{512} a^{6} - \frac{115}{1024} a^{5} + \frac{487}{6144} a^{4} + \frac{235}{3072} a^{3} + \frac{67}{768} a^{2} - \frac{133}{384} a + \frac{11}{96}$, $\frac{1}{2407175201936175153280171376841411467241265418248766598414336} a^{17} + \frac{1910669217208563759188707266618434115450545417845618099}{601793800484043788320042844210352866810316354562191649603584} a^{16} + \frac{278798660335996946087203902595888659811713171902122369}{300896900242021894160021422105176433405158177281095824801792} a^{15} - \frac{1623411350969157702328514074688127904053506655610258569}{200597933494681262773347614736784288936772118187397216534528} a^{14} - \frac{18619551806546007798314826346022646821710641042421506841}{1203587600968087576640085688420705733620632709124383299207168} a^{13} - \frac{29252640412072652775896735327865120433650457755496158011}{601793800484043788320042844210352866810316354562191649603584} a^{12} - \frac{183404104614705448178044202793352831053910439352814415927}{601793800484043788320042844210352866810316354562191649603584} a^{11} + \frac{35169757603546228642147248465460515962018296035159530297}{200597933494681262773347614736784288936772118187397216534528} a^{10} - \frac{5452608585341886081857822360441555969466510543092853855239}{2407175201936175153280171376841411467241265418248766598414336} a^{9} + \frac{185633707601353852538694070620230250720084459788505025065}{25074741686835157846668451842098036117096514773424652066816} a^{8} + \frac{213102037534037516507208112032146664565702895164085609795}{16264697310379561846487644438117645048927469042221395935232} a^{7} - \frac{64620706699551980763971815052490055863113436813166590887}{4701514066281592096250334720393381771955596520017122262528} a^{6} - \frac{16775114205801377752467152967984340106281523525859380566687}{150448450121010947080010711052588216702579088640547912400896} a^{5} - \frac{682958701648918505807355411198793946958378057271570095355}{6268685421708789461667112960524509029274128693356163016704} a^{4} - \frac{2924001418272492862193097918682949447960809754210892000931}{37612112530252736770002677763147054175644772160136978100224} a^{3} + \frac{87748529035550533758476588620896406789770509241143053595}{1175378516570398024062583680098345442988899130004280565632} a^{2} - \frac{2208204392790220895122804301954700848234128533414059535851}{4701514066281592096250334720393381771955596520017122262528} a - \frac{112516451913223185340959392581455793644434206326270115847}{391792838856799341354194560032781814329633043334760188544}$
Class group and class number
$C_{6}\times C_{1039665942}$, which has order $6237995652$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 248523426321.35065 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.6588.1, 3.3.301401.1, 6.0.14886798192.3, 6.0.31158999040743.3, 9.9.2886075179454821059008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $61$ | 61.6.4.2 | $x^{6} - 61 x^{3} + 7442$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 61.12.10.3 | $x^{12} - 61 x^{6} + 59536$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |