Normalized defining polynomial
\( x^{18} + 912 x^{16} + 310692 x^{14} + 52656708 x^{12} + 4846114662 x^{10} + 244755477132 x^{8} + 6554580709188 x^{6} + 88881650645340 x^{4} + 561033372337329 x^{2} + 1286936844705604 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-335985111257225502524094185723848201140371850113581056000000=-\,2^{30}\cdot 3^{6}\cdot 5^{6}\cdot 7^{14}\cdot 181^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2027.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{36} a^{6} + \frac{1}{12} a^{2} + \frac{1}{9}$, $\frac{1}{72} a^{7} - \frac{1}{72} a^{6} + \frac{1}{24} a^{3} - \frac{1}{24} a^{2} + \frac{1}{18} a - \frac{1}{18}$, $\frac{1}{432} a^{8} - \frac{5}{432} a^{6} + \frac{1}{144} a^{4} + \frac{205}{432} a^{2} + \frac{49}{108}$, $\frac{1}{864} a^{9} - \frac{1}{864} a^{8} - \frac{5}{864} a^{7} + \frac{5}{864} a^{6} + \frac{1}{288} a^{5} - \frac{1}{288} a^{4} + \frac{205}{864} a^{3} - \frac{205}{864} a^{2} + \frac{49}{216} a - \frac{49}{216}$, $\frac{1}{10368} a^{10} - \frac{1}{2592} a^{8} - \frac{1}{5184} a^{6} + \frac{13}{648} a^{4} - \frac{1327}{10368} a^{2} - \frac{383}{2592}$, $\frac{1}{10368} a^{11} - \frac{1}{2592} a^{9} - \frac{1}{5184} a^{7} + \frac{13}{648} a^{5} - \frac{1327}{10368} a^{3} - \frac{383}{2592} a$, $\frac{1}{1244160} a^{12} - \frac{1}{46080} a^{10} - \frac{11}{69120} a^{8} - \frac{6929}{622080} a^{6} - \frac{4231}{138240} a^{4} - \frac{5171}{15360} a^{2} + \frac{88009}{311040}$, $\frac{1}{2488320} a^{13} - \frac{1}{2488320} a^{12} - \frac{1}{92160} a^{11} + \frac{1}{92160} a^{10} - \frac{11}{138240} a^{9} + \frac{11}{138240} a^{8} - \frac{6929}{1244160} a^{7} + \frac{6929}{1244160} a^{6} - \frac{4231}{276480} a^{5} + \frac{4231}{276480} a^{4} - \frac{5171}{30720} a^{3} + \frac{5171}{30720} a^{2} + \frac{88009}{622080} a - \frac{88009}{622080}$, $\frac{1}{2597806080} a^{14} - \frac{289}{1298903040} a^{12} + \frac{679}{32071680} a^{10} - \frac{47443}{64945152} a^{8} + \frac{26421359}{2597806080} a^{6} - \frac{285301}{16035840} a^{4} + \frac{110069497}{2597806080} a^{2} - \frac{213614879}{649451520}$, $\frac{1}{2597806080} a^{15} + \frac{233}{1298903040} a^{13} - \frac{1}{2488320} a^{12} + \frac{331}{32071680} a^{11} + \frac{1}{92160} a^{10} + \frac{56393}{162362880} a^{9} - \frac{149}{138240} a^{8} - \frac{3079993}{2597806080} a^{7} + \frac{14129}{1244160} a^{6} - \frac{475019}{16035840} a^{5} + \frac{3271}{276480} a^{4} + \frac{289166653}{2597806080} a^{3} - \frac{19061}{276480} a^{2} + \frac{25595797}{649451520} a - \frac{229129}{622080}$, $\frac{1}{141068459381568332651374510080} a^{16} + \frac{1264394495387404987}{28213691876313666530274902016} a^{14} + \frac{29367950730950958082981}{141068459381568332651374510080} a^{12} - \frac{665597551386787808765333}{28213691876313666530274902016} a^{10} - \frac{36590674156956790956513929}{141068459381568332651374510080} a^{8} - \frac{1735465808229335600362586563}{141068459381568332651374510080} a^{6} - \frac{8573312321007223512250330433}{141068459381568332651374510080} a^{4} - \frac{51061997903851061460750062971}{141068459381568332651374510080} a^{2} + \frac{12443942321228678888005525417}{35267114845392083162843627520}$, $\frac{1}{2530338043572681485919404669953966080} a^{17} + \frac{23380884315205427194796251}{506067608714536297183880933990793216} a^{15} + \frac{59759862862517026996772848481}{506067608714536297183880933990793216} a^{13} - \frac{31355309123658332988856784859913}{2530338043572681485919404669953966080} a^{11} + \frac{336120165517580564235387785296759}{2530338043572681485919404669953966080} a^{9} - \frac{290838083869960959844234032858695}{506067608714536297183880933990793216} a^{7} - \frac{1}{72} a^{6} + \frac{65865273266849938910149396557216511}{2530338043572681485919404669953966080} a^{5} + \frac{50912899968473897008794740334358561}{506067608714536297183880933990793216} a^{3} - \frac{1}{24} a^{2} + \frac{104554190977020607290303039164634313}{632584510893170371479851167488491520} a - \frac{1}{18}$
Class group and class number
$C_{2}\times C_{6}\times C_{12}\times C_{12}\times C_{12}\times C_{12}\times C_{391740}$, which has order $97477447680$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{371321798780999240923}{84344601452422716197313488998465536} a^{17} - \frac{330470330984865867987605}{84344601452422716197313488998465536} a^{15} - \frac{108068758921284805072592503}{84344601452422716197313488998465536} a^{13} - \frac{17162650035442160333699334389}{84344601452422716197313488998465536} a^{11} - \frac{1422033131736216052212722964493}{84344601452422716197313488998465536} a^{9} - \frac{60276401057003079711257546857079}{84344601452422716197313488998465536} a^{7} - \frac{1210479919969556152042736390250997}{84344601452422716197313488998465536} a^{5} - \frac{12135901422384688097178496101548927}{84344601452422716197313488998465536} a^{3} - \frac{18726855528572098448046148010171659}{21086150363105679049328372249616384} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49926751662940.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.1605289.2, 3.3.152040.1, 6.0.164924977505344.1, 6.0.369858585600.1, 9.9.9056909796008436008506944000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $181$ | 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.6.5.1 | $x^{6} - 181$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 181.6.5.1 | $x^{6} - 181$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |