Normalized defining polynomial
\( x^{18} + 9 x^{16} - 14 x^{15} + 66 x^{14} - 69 x^{13} + 128 x^{12} + 24 x^{11} + 24 x^{10} + 57 x^{9} + 429 x^{8} - 714 x^{7} + 1095 x^{6} - 849 x^{5} + 483 x^{4} - 187 x^{3} + 54 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3355281677165339463856128=-\,2^{12}\cdot 3^{21}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{7866} a^{15} + \frac{14}{207} a^{14} - \frac{119}{3933} a^{13} - \frac{23}{342} a^{12} + \frac{47}{7866} a^{11} - \frac{43}{1311} a^{10} - \frac{43}{1311} a^{9} + \frac{899}{7866} a^{8} - \frac{2329}{7866} a^{7} - \frac{1642}{3933} a^{6} - \frac{571}{7866} a^{5} + \frac{2405}{7866} a^{4} + \frac{163}{342} a^{3} - \frac{1207}{2622} a^{2} - \frac{1147}{3933} a - \frac{1795}{7866}$, $\frac{1}{7866} a^{16} - \frac{43}{3933} a^{14} + \frac{77}{2622} a^{13} - \frac{65}{1311} a^{12} + \frac{479}{3933} a^{11} + \frac{109}{1311} a^{10} - \frac{811}{7866} a^{9} + \frac{30}{437} a^{8} + \frac{74}{171} a^{7} + \frac{2887}{7866} a^{6} - \frac{1073}{2622} a^{5} - \frac{455}{1311} a^{4} + \frac{2497}{7866} a^{3} - \frac{1781}{7866} a^{2} + \frac{2005}{7866} a - \frac{41}{414}$, $\frac{1}{28561446} a^{17} - \frac{89}{9520482} a^{16} - \frac{661}{14280723} a^{15} + \frac{44219}{1586747} a^{14} + \frac{46325}{1586747} a^{13} - \frac{2105603}{28561446} a^{12} - \frac{139604}{4760241} a^{11} + \frac{1763575}{14280723} a^{10} + \frac{140675}{4760241} a^{9} - \frac{4661851}{28561446} a^{8} - \frac{9981035}{28561446} a^{7} - \frac{439811}{3173494} a^{6} + \frac{98386}{1586747} a^{5} - \frac{6478325}{28561446} a^{4} - \frac{10374503}{28561446} a^{3} + \frac{1632260}{14280723} a^{2} + \frac{9990907}{28561446} a + \frac{1229710}{4760241}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1138412}{4760241} a^{17} + \frac{201973}{4760241} a^{16} + \frac{10319149}{4760241} a^{15} - \frac{4695016}{1586747} a^{14} + \frac{24325327}{1586747} a^{13} - \frac{21984243}{1586747} a^{12} + \frac{136212529}{4760241} a^{11} + \frac{16731421}{1586747} a^{10} + \frac{13329031}{1586747} a^{9} + \frac{1079701}{68989} a^{8} + \frac{504491279}{4760241} a^{7} - \frac{721060708}{4760241} a^{6} + \frac{1134348962}{4760241} a^{5} - \frac{260196844}{1586747} a^{4} + \frac{146867956}{1586747} a^{3} - \frac{151688789}{4760241} a^{2} + \frac{49106263}{4760241} a - \frac{3424937}{4760241} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 112152.79938374869 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.352519065792.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $23$ | 23.6.4.2 | $x^{6} - 23 x^{3} + 3703$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.6.4.2 | $x^{6} - 23 x^{3} + 3703$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |