Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + 7 x^{15} - 32 x^{14} + 46 x^{13} + 23 x^{12} - 51 x^{11} - 90 x^{10} + 82 x^{9} + 707 x^{8} - 1449 x^{7} + 827 x^{6} - 54 x^{5} + 1381 x^{4} - 3443 x^{3} + 3328 x^{2} - 1519 x + 283 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3340021712790174678422667=-\,3^{9}\cdot 7^{4}\cdot 643^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 643$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{13} + \frac{1}{7} a^{12} - \frac{2}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} - \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{13} - \frac{3}{7} a^{11} + \frac{3}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{9} - \frac{3}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{4} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{238328215556667695632621} a^{17} - \frac{13344977105231835738886}{238328215556667695632621} a^{16} + \frac{10957901356323190478968}{238328215556667695632621} a^{15} - \frac{4639988538767742652766}{238328215556667695632621} a^{14} - \frac{29335402475256592277268}{238328215556667695632621} a^{13} - \frac{66497732363310737364821}{238328215556667695632621} a^{12} - \frac{3824197030795775589064}{34046887936666813661803} a^{11} + \frac{5220820059683351328385}{238328215556667695632621} a^{10} - \frac{39874344346276337337051}{238328215556667695632621} a^{9} - \frac{106609183916534468879606}{238328215556667695632621} a^{8} - \frac{89508778933741767550099}{238328215556667695632621} a^{7} - \frac{73015673660315033886039}{238328215556667695632621} a^{6} + \frac{12881407189788204321609}{34046887936666813661803} a^{5} + \frac{13626997406868834678181}{238328215556667695632621} a^{4} + \frac{52401389190287560818821}{238328215556667695632621} a^{3} - \frac{20955077419787007068384}{238328215556667695632621} a^{2} + \frac{62649461943082698727331}{238328215556667695632621} a - \frac{22951822335570408418906}{238328215556667695632621}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{15212591720258}{1522227414307243} a^{17} + \frac{52921042723180}{1522227414307243} a^{16} - \frac{83368169960277}{1522227414307243} a^{15} - \frac{101472791851520}{1522227414307243} a^{14} + \frac{581510075493933}{1522227414307243} a^{13} - \frac{786004073191664}{1522227414307243} a^{12} - \frac{51630999663319}{217461059186749} a^{11} + \frac{1294337404048091}{1522227414307243} a^{10} + \frac{1724033872292780}{1522227414307243} a^{9} - \frac{2057384270800276}{1522227414307243} a^{8} - \frac{11785243952055857}{1522227414307243} a^{7} + \frac{27190137317764072}{1522227414307243} a^{6} - \frac{1738136939298293}{217461059186749} a^{5} - \frac{5088326971002902}{1522227414307243} a^{4} - \frac{22065821193515804}{1522227414307243} a^{3} + \frac{63627057463250654}{1522227414307243} a^{2} - \frac{52646853618291816}{1522227414307243} a + \frac{16234308813897989}{1522227414307243} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 164073.537426 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3\wr S_3$ (as 18T119):
| A solvable group of order 324 |
| The 44 conjugacy class representatives for $C_2\times C_3\wr S_3$ |
| Character table for $C_2\times C_3\wr S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1929.1, 6.0.11163123.4, 9.9.351716516361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | R | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 643 | Data not computed | ||||||