Normalized defining polynomial
\( x^{18} + 315 x^{16} + 42903 x^{14} + 3235470 x^{12} + 145272897 x^{10} - 6297529 x^{9} + 3893509620 x^{8} - 600770772 x^{7} + 59407364016 x^{6} - 1188816048 x^{5} + 455759740800 x^{4} + 682703468160 x^{3} + 1421970391296 x^{2} + 7312629429504 x + 18089129916928 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33072058616555172267704055543460613736681159=-\,3^{45}\cdot 7^{15}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $261.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2079=3^{3}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2079}(1,·)$, $\chi_{2079}(131,·)$, $\chi_{2079}(1222,·)$, $\chi_{2079}(1550,·)$, $\chi_{2079}(529,·)$, $\chi_{2079}(857,·)$, $\chi_{2079}(1948,·)$, $\chi_{2079}(2078,·)$, $\chi_{2079}(164,·)$, $\chi_{2079}(1255,·)$, $\chi_{2079}(1385,·)$, $\chi_{2079}(1387,·)$, $\chi_{2079}(1517,·)$, $\chi_{2079}(562,·)$, $\chi_{2079}(692,·)$, $\chi_{2079}(694,·)$, $\chi_{2079}(824,·)$, $\chi_{2079}(1915,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{8} - \frac{1}{14} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{28} a^{11} - \frac{1}{28} a^{9} - \frac{1}{28} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{392} a^{12} + \frac{1}{56} a^{10} - \frac{3}{56} a^{8} - \frac{1}{28} a^{6} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{14896} a^{13} + \frac{9}{7448} a^{12} + \frac{1}{2128} a^{11} - \frac{11}{1064} a^{10} + \frac{11}{304} a^{9} + \frac{9}{1064} a^{8} - \frac{1}{1064} a^{7} + \frac{13}{532} a^{6} + \frac{105}{304} a^{5} - \frac{135}{304} a^{4} - \frac{65}{152} a^{3} - \frac{15}{38} a^{2} + \frac{7}{38} a$, $\frac{1}{167051817632} a^{14} - \frac{120629}{5220369301} a^{13} + \frac{22614939}{167051817632} a^{12} - \frac{1073337}{1491534086} a^{11} - \frac{678979311}{23864545376} a^{10} - \frac{9314535}{213076298} a^{9} + \frac{626041217}{11932272688} a^{8} - \frac{71797269}{1491534086} a^{7} - \frac{1536013417}{23864545376} a^{6} - \frac{595071657}{3409220768} a^{5} + \frac{41635053}{852305192} a^{4} + \frac{184286087}{852305192} a^{3} - \frac{17275764}{106538149} a^{2} - \frac{81577935}{213076298} a - \frac{2683985}{5607271}$, $\frac{1}{334103635264} a^{15} - \frac{287779}{17584401856} a^{13} - \frac{25315183}{41762954408} a^{12} + \frac{688267373}{47729090752} a^{11} + \frac{96038965}{5966136344} a^{10} - \frac{584844201}{23864545376} a^{9} - \frac{69600071}{5966136344} a^{8} + \frac{2261288079}{47729090752} a^{7} + \frac{393065873}{47729090752} a^{6} + \frac{36179091}{213076298} a^{5} + \frac{218670101}{852305192} a^{4} + \frac{347009107}{852305192} a^{3} + \frac{41120014}{106538149} a^{2} - \frac{64460351}{213076298} a - \frac{2333503}{5607271}$, $\frac{1}{668207270528} a^{16} - \frac{1}{668207270528} a^{14} + \frac{621833}{41762954408} a^{13} + \frac{243369603}{668207270528} a^{12} + \frac{24857603}{5966136344} a^{11} - \frac{1704388893}{47729090752} a^{10} + \frac{26415565}{852305192} a^{9} + \frac{1266124735}{95458181504} a^{8} - \frac{796806527}{95458181504} a^{7} + \frac{759352961}{11932272688} a^{6} + \frac{734136235}{1704610384} a^{5} + \frac{353378067}{852305192} a^{4} + \frac{8533553}{426152596} a^{3} - \frac{7084581}{426152596} a^{2} + \frac{63035439}{213076298} a - \frac{2236824}{5607271}$, $\frac{1}{199815596251321475435675574072500599530540343296982141634816} a^{17} + \frac{56568972992649884773664060259171389242012168327}{99907798125660737717837787036250299765270171648491070817408} a^{16} + \frac{138032431708608798461773124445470662639799326787}{199815596251321475435675574072500599530540343296982141634816} a^{15} - \frac{140116277541223359959727587056753737349329813239}{99907798125660737717837787036250299765270171648491070817408} a^{14} - \frac{5343358860079079266670996697714897741407612430986093889}{199815596251321475435675574072500599530540343296982141634816} a^{13} - \frac{42691379802208778975372630228771800911400180088230177755}{99907798125660737717837787036250299765270171648491070817408} a^{12} - \frac{94284294606711179526899613277690260229631921201198965619}{14272542589380105388262541005178614252181453092641581545344} a^{11} - \frac{24326860024964640744650992916529138395474000970426276213}{1019467327812864670590181500369901018012960935188684396096} a^{10} - \frac{1873185221550339777925673274542732760448324471010282430249}{28545085178760210776525082010357228504362906185283163090688} a^{9} + \frac{18381896178302447451073295315242933730733927523471928243}{28545085178760210776525082010357228504362906185283163090688} a^{8} - \frac{252878485028898595816399630381009809888930268703440816471}{14272542589380105388262541005178614252181453092641581545344} a^{7} - \frac{51137966024096109609560685778202209880740370001616881997}{7136271294690052694131270502589307126090726546320790772672} a^{6} + \frac{80606518513314723117842181845746917067067226693406743359}{254866831953216167647545375092475254503240233797171099024} a^{5} - \frac{29665560035777073182494059274715369758017514228818956331}{127433415976608083823772687546237627251620116898585549512} a^{4} + \frac{5392466053120480651756091072517452989338279415603321377}{31858353994152020955943171886559406812905029224646387378} a^{3} + \frac{25712175460263571379724710331908560269309408369350595603}{63716707988304041911886343773118813625810058449292774756} a^{2} + \frac{6189642423059692525312041217525009024669871304044108785}{15929176997076010477971585943279703406452514612323193689} a + \frac{11621089571873629626868754642112943963667377690966709}{838377736688211077787978207541037021392237611174904931}$
Class group and class number
$C_{3}\times C_{18}\times C_{721278}$, which has order $38949012$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10392888.21418944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\zeta_{9})^+\), 6.0.8985939039.8, 9.9.3691950281939241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||