Normalized defining polynomial
\( x^{18} - 2 x^{17} + 50 x^{16} + 26 x^{15} + 958 x^{14} + 606 x^{13} + 11197 x^{12} + 636 x^{11} + 68077 x^{10} - 139670 x^{9} + 170189 x^{8} - 1801562 x^{7} + 93271 x^{6} - 6155838 x^{5} + 11588776 x^{4} + 36901748 x^{3} + 100260832 x^{2} + 145398680 x + 203590394 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-330204794362909836518332446749753344=-\,2^{18}\cdot 13^{2}\cdot 193^{6}\cdot 229^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 193, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{13} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{14} a^{16} - \frac{1}{14} a^{15} - \frac{3}{7} a^{14} - \frac{1}{14} a^{13} - \frac{1}{14} a^{12} - \frac{2}{7} a^{11} + \frac{3}{7} a^{10} + \frac{3}{14} a^{8} + \frac{5}{14} a^{7} - \frac{1}{2} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{816191562881082306479293435980725703074212743935942050760575348894558} a^{17} + \frac{21191337395432547337085285109495530050198041007241417735357960462209}{816191562881082306479293435980725703074212743935942050760575348894558} a^{16} + \frac{18452959534219113860126111778420422198316173969569670529682834502055}{408095781440541153239646717990362851537106371967971025380287674447279} a^{15} - \frac{337164685549084949770616521370751227921952498215466241877840732871579}{816191562881082306479293435980725703074212743935942050760575348894558} a^{14} + \frac{295077133121727504101298766568766235007955734366627812402822306409827}{816191562881082306479293435980725703074212743935942050760575348894558} a^{13} + \frac{168872566209196555353055940238339532377787702733623134391668231238144}{408095781440541153239646717990362851537106371967971025380287674447279} a^{12} - \frac{202986738677260220110880433813559740498325215486303395704856972704203}{408095781440541153239646717990362851537106371967971025380287674447279} a^{11} + \frac{107721484401092214462963228894887591032876647107375716078168446964554}{408095781440541153239646717990362851537106371967971025380287674447279} a^{10} + \frac{313491298775736549453982149351609609997287818051438002275445182319645}{816191562881082306479293435980725703074212743935942050760575348894558} a^{9} + \frac{363660414827534650874305668019741090065557721354213188761185448286553}{816191562881082306479293435980725703074212743935942050760575348894558} a^{8} + \frac{176052898447910507651594406099535305102819718115158526632874503221863}{816191562881082306479293435980725703074212743935942050760575348894558} a^{7} - \frac{7774375563761485687304882936000822565952152201820135036200961864301}{58299397348648736177092388284337550219586624566853003625755382063897} a^{6} + \frac{133117007157725710611477831757608567908868754476481303496428234013490}{408095781440541153239646717990362851537106371967971025380287674447279} a^{5} + \frac{69821613590310410962946593972354813533642565141224228642818044743005}{408095781440541153239646717990362851537106371967971025380287674447279} a^{4} + \frac{16817032388468367558234053772644785861684970142537660011699747116422}{408095781440541153239646717990362851537106371967971025380287674447279} a^{3} - \frac{81308642217452853396182348810302403037561728681847358761537604876643}{408095781440541153239646717990362851537106371967971025380287674447279} a^{2} - \frac{9868329394747259980263780811564514109027717186688844281127177642600}{58299397348648736177092388284337550219586624566853003625755382063897} a + \frac{3471851723515878327199380341686784642676577812155684432143585561277}{8328485335521248025298912612048221459940946366693286232250768866271}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12460}$, which has order $99680$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 708923.533235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n769 are not computed |
| Character table for t18n769 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.1789291325044.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.10.8 | $x^{6} + 2 x^{5} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 193 | Data not computed | ||||||
| 229 | Data not computed | ||||||