Normalized defining polynomial
\( x^{18} - 9 x^{17} + 32 x^{16} - 52 x^{15} - 2 x^{14} + 210 x^{13} + 100 x^{12} - 3044 x^{11} + 7524 x^{10} - 5808 x^{9} + 2812 x^{8} - 16358 x^{7} + 42002 x^{6} - 52920 x^{5} + 50867 x^{4} - 41143 x^{3} + 47648 x^{2} - 31860 x + 16200 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-330202222869024796498756781527=-\,7^{9}\cdot 67^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{630} a^{14} - \frac{1}{90} a^{13} - \frac{29}{630} a^{12} - \frac{5}{63} a^{11} + \frac{13}{210} a^{10} + \frac{22}{315} a^{9} - \frac{71}{210} a^{7} - \frac{43}{630} a^{6} - \frac{29}{90} a^{5} - \frac{8}{315} a^{4} + \frac{173}{630} a^{3} + \frac{2}{105} a^{2} + \frac{146}{315} a + \frac{3}{7}$, $\frac{1}{630} a^{15} + \frac{3}{70} a^{13} - \frac{43}{630} a^{12} + \frac{2}{315} a^{11} + \frac{1}{315} a^{10} - \frac{1}{90} a^{9} + \frac{17}{105} a^{8} - \frac{137}{315} a^{7} - \frac{3}{10} a^{6} + \frac{11}{210} a^{5} + \frac{83}{315} a^{4} + \frac{139}{315} a^{3} + \frac{61}{630} a^{2} + \frac{109}{630} a$, $\frac{1}{2094598650025980} a^{16} - \frac{2}{523649662506495} a^{15} + \frac{296340195629}{523649662506495} a^{14} - \frac{98780065208}{24935698214595} a^{13} - \frac{49430843666969}{1047299325012990} a^{12} + \frac{141920260087}{104729932501299} a^{11} + \frac{31244276200049}{1047299325012990} a^{10} + \frac{7602298574219}{349099775004330} a^{9} - \frac{11596585431925}{209459865002598} a^{8} - \frac{34445810098066}{523649662506495} a^{7} - \frac{38240474787593}{523649662506495} a^{6} - \frac{3099430653923}{9974279285838} a^{5} - \frac{89284027365821}{523649662506495} a^{4} - \frac{1504838308213}{1047299325012990} a^{3} + \frac{849118837607189}{2094598650025980} a^{2} + \frac{10437990419259}{38788863889370} a + \frac{1611715911149}{3878886388937}$, $\frac{1}{1841152213372836420} a^{17} + \frac{431}{1841152213372836420} a^{16} - \frac{58084515769138}{153429351114403035} a^{15} - \frac{48177589194533}{920576106686418210} a^{14} + \frac{15097954490997491}{184115221337283642} a^{13} + \frac{3739389646174871}{92057610668641821} a^{12} - \frac{219030729040906}{7306159576876335} a^{11} - \frac{76323710663930053}{920576106686418210} a^{10} - \frac{968223712973812}{65755436191887015} a^{9} - \frac{136537125094648447}{920576106686418210} a^{8} + \frac{20044634346286597}{102286234076268690} a^{7} + \frac{129468143340572033}{920576106686418210} a^{6} + \frac{35822554288140512}{92057610668641821} a^{5} + \frac{12722176819858724}{460288053343209105} a^{4} - \frac{5919185066453693}{613717404457612140} a^{3} - \frac{55686879450268099}{1841152213372836420} a^{2} + \frac{37632604099397411}{102286234076268690} a + \frac{439581651521828}{1136513711958541}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2912368.54861 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.31423.1 x3, 3.3.4489.1, 6.0.6911834503.2, 6.0.1539727.1 x2, 6.0.6911834503.1, 9.3.31027225083967.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1539727.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $67$ | 67.9.6.1 | $x^{9} + 3216 x^{6} + 3443063 x^{3} + 1231925248$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 67.9.6.1 | $x^{9} + 3216 x^{6} + 3443063 x^{3} + 1231925248$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |