Normalized defining polynomial
\( x^{18} - 218 x^{15} + 8829 x^{14} + 1962 x^{13} + 3052 x^{12} - 2601612 x^{11} + 4236939 x^{10} - 23442412 x^{9} + 250790688 x^{8} - 356748498 x^{7} + 5184150199 x^{6} - 18049683870 x^{5} + 61464190068 x^{4} - 380206748136 x^{3} + 665349107904 x^{2} + 398639222784 x + 381578493952 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-330007904499468387933830810627328948148827793503=-\,3^{27}\cdot 109^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $436.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(981=3^{2}\cdot 109\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{981}(256,·)$, $\chi_{981}(1,·)$, $\chi_{981}(965,·)$, $\chi_{981}(16,·)$, $\chi_{981}(980,·)$, $\chi_{981}(725,·)$, $\chi_{981}(790,·)$, $\chi_{981}(154,·)$, $\chi_{981}(797,·)$, $\chi_{981}(479,·)$, $\chi_{981}(868,·)$, $\chi_{981}(809,·)$, $\chi_{981}(172,·)$, $\chi_{981}(113,·)$, $\chi_{981}(502,·)$, $\chi_{981}(184,·)$, $\chi_{981}(827,·)$, $\chi_{981}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{5} + \frac{5}{32} a^{3} - \frac{1}{8} a$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} + \frac{1}{128} a^{4} - \frac{1}{32} a^{2}$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{7} - \frac{7}{128} a^{5} - \frac{1}{16} a^{3} + \frac{1}{8} a$, $\frac{1}{256} a^{10} - \frac{1}{256} a^{9} - \frac{1}{128} a^{7} - \frac{3}{256} a^{6} - \frac{1}{256} a^{5} - \frac{3}{128} a^{4} + \frac{1}{64} a^{3} + \frac{1}{32} a^{2}$, $\frac{1}{2048} a^{11} + \frac{1}{1024} a^{10} - \frac{3}{2048} a^{9} - \frac{1}{1024} a^{8} + \frac{7}{2048} a^{7} + \frac{27}{1024} a^{6} - \frac{105}{2048} a^{5} - \frac{7}{1024} a^{4} - \frac{119}{512} a^{3} + \frac{59}{256} a^{2} + \frac{1}{32} a - \frac{1}{2}$, $\frac{1}{188416} a^{12} - \frac{1}{8192} a^{11} - \frac{245}{188416} a^{10} + \frac{697}{188416} a^{9} - \frac{311}{188416} a^{8} - \frac{1881}{188416} a^{7} + \frac{1713}{188416} a^{6} - \frac{10205}{188416} a^{5} + \frac{1737}{94208} a^{4} + \frac{3061}{47104} a^{3} + \frac{1853}{23552} a^{2} + \frac{1459}{2944} a + \frac{73}{184}$, $\frac{1}{753664} a^{13} - \frac{1}{376832} a^{12} + \frac{1}{94208} a^{11} - \frac{1}{23552} a^{10} + \frac{907}{376832} a^{9} + \frac{105}{188416} a^{8} + \frac{2881}{188416} a^{7} + \frac{829}{94208} a^{6} + \frac{43089}{753664} a^{5} + \frac{21991}{376832} a^{4} - \frac{22541}{188416} a^{3} - \frac{14183}{94208} a^{2} - \frac{5361}{11776} a - \frac{307}{736}$, $\frac{1}{1507328} a^{14} - \frac{1}{1507328} a^{13} - \frac{1}{753664} a^{12} + \frac{5}{47104} a^{11} - \frac{1073}{753664} a^{10} - \frac{1671}{753664} a^{9} - \frac{101}{47104} a^{8} + \frac{2413}{376832} a^{7} + \frac{18353}{1507328} a^{6} - \frac{66809}{1507328} a^{5} - \frac{28155}{753664} a^{4} - \frac{34179}{376832} a^{3} + \frac{25257}{188416} a^{2} - \frac{8697}{23552} a + \frac{581}{1472}$, $\frac{1}{259260416} a^{15} + \frac{19}{259260416} a^{14} + \frac{1}{129630208} a^{13} + \frac{25}{16203776} a^{12} + \frac{163}{129630208} a^{11} + \frac{160785}{129630208} a^{10} + \frac{11495}{4050944} a^{9} - \frac{216681}{64815104} a^{8} + \frac{647481}{259260416} a^{7} + \frac{4216995}{259260416} a^{6} - \frac{7058157}{129630208} a^{5} + \frac{3642551}{64815104} a^{4} - \frac{3617453}{32407552} a^{3} - \frac{730461}{8101888} a^{2} - \frac{112481}{1012736} a + \frac{211}{1472}$, $\frac{1}{2074083328} a^{16} + \frac{1}{1037041664} a^{15} + \frac{195}{2074083328} a^{14} - \frac{75}{1037041664} a^{13} + \frac{1063}{1037041664} a^{12} - \frac{113977}{518520832} a^{11} + \frac{331627}{1037041664} a^{10} + \frac{1923233}{518520832} a^{9} + \frac{3882557}{2074083328} a^{8} + \frac{6050117}{1037041664} a^{7} - \frac{27174729}{2074083328} a^{6} + \frac{52597993}{1037041664} a^{5} - \frac{22293863}{518520832} a^{4} + \frac{61650131}{259260416} a^{3} - \frac{214051}{1409024} a^{2} - \frac{91415}{253184} a + \frac{9}{2944}$, $\frac{1}{24367592705502871803317893579095329944894322115289808896} a^{17} + \frac{4848171701058646194025826866073935573958502265}{24367592705502871803317893579095329944894322115289808896} a^{16} - \frac{30064813828428148118085362777828195910114575567}{24367592705502871803317893579095329944894322115289808896} a^{15} - \frac{4689916167232038579681490000914241833795117442993}{24367592705502871803317893579095329944894322115289808896} a^{14} + \frac{2849790655450121285407699804745707371918949603637}{6091898176375717950829473394773832486223580528822452224} a^{13} + \frac{10612541154357869620806309690917590374798649244143}{12183796352751435901658946789547664972447161057644904448} a^{12} + \frac{1072484562882849331780034950121550888412965641453}{12183796352751435901658946789547664972447161057644904448} a^{11} + \frac{4399464765236249109227316847985821346651438500054463}{12183796352751435901658946789547664972447161057644904448} a^{10} + \frac{40857077598307387881591215972185099710936308535934745}{24367592705502871803317893579095329944894322115289808896} a^{9} - \frac{42370383773343384309813272296085132538626900352442907}{24367592705502871803317893579095329944894322115289808896} a^{8} + \frac{174395700945843779830677911325132948824836492023094109}{24367592705502871803317893579095329944894322115289808896} a^{7} - \frac{436317320156769909797490392572454994362357061093223133}{24367592705502871803317893579095329944894322115289808896} a^{6} + \frac{374145470038859295352466091979654550889920658139012257}{12183796352751435901658946789547664972447161057644904448} a^{5} - \frac{156302008668614491088734246552139168507689889150207707}{6091898176375717950829473394773832486223580528822452224} a^{4} + \frac{629586111449315453391574541035639116002706429966419021}{3045949088187858975414736697386916243111790264411226112} a^{3} + \frac{58659925788409638407289524048165817601485928348030629}{380743636023482371926842087173364530388973783051403264} a^{2} + \frac{2099559370042025953105373312771006608643416832230591}{5949119312866912061356907612083820787327715360178176} a - \frac{9348031273629416764446178528175308219232666053661}{34587902981784372449749462860952446437951833489408}$
Class group and class number
$C_{3}\times C_{593413236}$, which has order $1780239708$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3866670056388.9624 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-327}) \), 3.3.11881.1, 6.0.415428467823.1, 9.9.10589294828624773798161.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 109 | Data not computed | ||||||