Normalized defining polynomial
\( x^{18} - 6 x^{17} + 51 x^{16} - 146 x^{15} + 734 x^{14} - 934 x^{13} + 5142 x^{12} + 210 x^{11} + 27604 x^{10} + 30598 x^{9} + 124796 x^{8} + 255754 x^{7} + 593654 x^{6} + 1154974 x^{5} + 2414142 x^{4} + 3055670 x^{3} + 3388775 x^{2} + 3140424 x + 2055213 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-32923515554977373578036580514267136=-\,2^{20}\cdot 7^{12}\cdot 197^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{44} a^{12} - \frac{1}{44} a^{10} - \frac{1}{11} a^{9} - \frac{3}{22} a^{8} - \frac{1}{11} a^{7} + \frac{1}{22} a^{6} - \frac{2}{11} a^{5} + \frac{19}{44} a^{4} - \frac{1}{11} a^{3} - \frac{21}{44} a^{2} - \frac{4}{11} a + \frac{5}{22}$, $\frac{1}{44} a^{13} - \frac{1}{44} a^{11} - \frac{1}{11} a^{10} + \frac{5}{44} a^{9} + \frac{7}{44} a^{8} + \frac{1}{22} a^{7} - \frac{2}{11} a^{6} + \frac{19}{44} a^{5} - \frac{1}{11} a^{4} + \frac{1}{44} a^{3} + \frac{3}{22} a^{2} + \frac{21}{44} a + \frac{1}{4}$, $\frac{1}{88} a^{14} - \frac{1}{88} a^{12} - \frac{1}{22} a^{11} + \frac{5}{88} a^{10} - \frac{1}{22} a^{9} - \frac{9}{88} a^{8} - \frac{1}{11} a^{7} + \frac{19}{88} a^{6} + \frac{5}{11} a^{5} - \frac{43}{88} a^{4} + \frac{7}{22} a^{3} + \frac{43}{88} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{2288} a^{15} - \frac{5}{2288} a^{14} + \frac{3}{2288} a^{13} + \frac{15}{2288} a^{12} + \frac{21}{2288} a^{11} - \frac{13}{176} a^{10} - \frac{113}{2288} a^{9} + \frac{135}{2288} a^{8} - \frac{23}{208} a^{7} - \frac{323}{2288} a^{6} + \frac{777}{2288} a^{5} + \frac{713}{2288} a^{4} - \frac{589}{2288} a^{3} + \frac{21}{2288} a^{2} - \frac{327}{2288} a + \frac{877}{2288}$, $\frac{1}{13728} a^{16} - \frac{1}{6864} a^{15} + \frac{5}{1716} a^{14} - \frac{7}{3432} a^{13} + \frac{59}{6864} a^{12} - \frac{139}{2288} a^{11} - \frac{69}{1144} a^{10} + \frac{25}{286} a^{9} + \frac{133}{858} a^{8} - \frac{437}{6864} a^{7} - \frac{503}{3432} a^{6} + \frac{127}{1716} a^{5} + \frac{749}{6864} a^{4} - \frac{2381}{6864} a^{3} - \frac{283}{858} a^{2} + \frac{5}{24} a + \frac{1605}{4576}$, $\frac{1}{23306861537418278149605588826328587200} a^{17} + \frac{40436192519959010080584507520649}{7768953845806092716535196275442862400} a^{16} + \frac{275069996669109720788639713760269}{1294825640967682119422532712573810400} a^{15} + \frac{439186122700099673294999654622733}{145667884608864238435034930164553670} a^{14} - \frac{4525943112411948230304062788374701}{896417751439164544215599570243407200} a^{13} + \frac{18488369313404640553021333092960961}{2913357692177284768700698603291073400} a^{12} + \frac{13763527919930506320666587764761077}{298805917146388181405199856747802400} a^{11} + \frac{25313527050661862488789561381814761}{485559615362880794783449767215178900} a^{10} + \frac{629316324723415641481755358204038397}{5826715384354569537401397206582146800} a^{9} + \frac{38038256686799114968774776613738471}{1059402797155376279527526764833117600} a^{8} - \frac{216020035841432264818086470443628993}{896417751439164544215599570243407200} a^{7} - \frac{10073052421583627755688410371586201}{116534307687091390748027944131642936} a^{6} - \frac{24270974621699968451419221256630843}{1059402797155376279527526764833117600} a^{5} + \frac{480570521603758792231800668074783159}{5826715384354569537401397206582146800} a^{4} + \frac{4498254082348981686358747933043623}{11952236685855527256207994269912096} a^{3} + \frac{26663436792950048241654678595740677}{145667884608864238435034930164553670} a^{2} - \frac{78995977517507255057136651999897413}{4661372307483655629921117765265717440} a + \frac{5497003738661254013608998327676021}{235422843812305839895005947740692800}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{90}$, which has order $2160$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27216227.2532 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_4$ (as 18T66):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_3:S_4$ |
| Character table for $C_2\times C_3:S_4$ |
Intermediate fields
| 3.3.9653.1, 3.3.788.1, 3.3.38612.2, 3.3.38612.1, 6.0.1490886544.1, 9.9.11340523913674816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.16.2 | $x^{12} - 108 x^{10} - 171 x^{8} + 344 x^{6} - 61 x^{4} + 468 x^{2} + 359$ | $6$ | $2$ | $16$ | $(C_6\times C_2):C_2$ | $[2, 2]_{3}^{2}$ | |
| 7 | Data not computed | ||||||
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |