Properties

Label 18.0.32829069322...7363.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{21}\cdot 11^{12}$
Root discriminant $17.82$
Ramified primes $3, 11$
Class number $1$
Class group Trivial
Galois group $S_3\wr C_2$ (as 18T36)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, 9, 10, 18, 27, 4, 18, 18, 1, 57, -9, 53, -21, 27, -6, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 6*x^16 - 6*x^15 + 27*x^14 - 21*x^13 + 53*x^12 - 9*x^11 + 57*x^10 + x^9 + 18*x^8 + 18*x^7 + 4*x^6 + 27*x^5 + 18*x^4 + 10*x^3 + 9*x^2 + 3*x + 1)
 
gp: K = bnfinit(x^18 + 6*x^16 - 6*x^15 + 27*x^14 - 21*x^13 + 53*x^12 - 9*x^11 + 57*x^10 + x^9 + 18*x^8 + 18*x^7 + 4*x^6 + 27*x^5 + 18*x^4 + 10*x^3 + 9*x^2 + 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} + 6 x^{16} - 6 x^{15} + 27 x^{14} - 21 x^{13} + 53 x^{12} - 9 x^{11} + 57 x^{10} + x^{9} + 18 x^{8} + 18 x^{7} + 4 x^{6} + 27 x^{5} + 18 x^{4} + 10 x^{3} + 9 x^{2} + 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-32829069322819602987363=-\,3^{21}\cdot 11^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{9} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{18} a^{7} + \frac{1}{3} a^{6} - \frac{5}{18} a^{5} + \frac{5}{18} a^{4} + \frac{1}{3} a^{3} - \frac{7}{18} a^{2} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{9} a^{11} - \frac{1}{18} a^{10} + \frac{4}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{7}{18} a^{5} - \frac{1}{6} a^{4} + \frac{1}{9} a^{3} - \frac{2}{9} a^{2} + \frac{5}{18} a - \frac{1}{6}$, $\frac{1}{35920926} a^{17} + \frac{880391}{35920926} a^{16} + \frac{270454}{17960463} a^{15} + \frac{1413913}{17960463} a^{14} + \frac{328547}{11973642} a^{13} + \frac{556469}{11973642} a^{12} - \frac{2859406}{17960463} a^{11} + \frac{2056736}{17960463} a^{10} + \frac{2885302}{17960463} a^{9} + \frac{8712263}{17960463} a^{8} + \frac{15190159}{35920926} a^{7} + \frac{171137}{17960463} a^{6} + \frac{8270173}{35920926} a^{5} - \frac{12204721}{35920926} a^{4} + \frac{2756855}{11973642} a^{3} + \frac{272962}{5986821} a^{2} + \frac{9768007}{35920926} a - \frac{654266}{1995607}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{569556}{1995607} a^{17} - \frac{203280}{1995607} a^{16} + \frac{3570616}{1995607} a^{15} - \frac{13727663}{5986821} a^{14} + \frac{17487510}{1995607} a^{13} - \frac{18111570}{1995607} a^{12} + \frac{38075500}{1995607} a^{11} - \frac{17898066}{1995607} a^{10} + \frac{41130458}{1995607} a^{9} - \frac{34173896}{5986821} a^{8} + \frac{19330452}{1995607} a^{7} + \frac{5336156}{1995607} a^{6} + \frac{2977070}{5986821} a^{5} + \frac{13815582}{1995607} a^{4} + \frac{7402348}{1995607} a^{3} + \frac{4271650}{1995607} a^{2} + \frac{5949654}{1995607} a + \frac{2184350}{1995607} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33659.9437841 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 18T36):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $S_3\wr C_2$
Character table for $S_3\wr C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 9.3.34869635163.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: 6.0.395307.1, 6.4.32019867.1
Degree 9 sibling: 9.3.34869635163.1
Degree 12 siblings: 12.6.11277990709674579.1, 12.0.5156831600217.1, 12.2.11277990709674579.1, 12.0.46411484401953.1, 12.0.12657677564169.1, 12.0.1025271882697689.2
Degree 18 siblings: Deg 18, Deg 18

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.7.5$x^{6} + 6 x^{2} + 3$$6$$1$$7$$D_{6}$$[3/2]_{2}^{2}$
3.12.14.11$x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$