Normalized defining polynomial
\( x^{18} + 6 x^{16} - 6 x^{15} + 27 x^{14} - 21 x^{13} + 53 x^{12} - 9 x^{11} + 57 x^{10} + x^{9} + 18 x^{8} + 18 x^{7} + 4 x^{6} + 27 x^{5} + 18 x^{4} + 10 x^{3} + 9 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-32829069322819602987363=-\,3^{21}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{9} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{18} a^{7} + \frac{1}{3} a^{6} - \frac{5}{18} a^{5} + \frac{5}{18} a^{4} + \frac{1}{3} a^{3} - \frac{7}{18} a^{2} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{9} a^{11} - \frac{1}{18} a^{10} + \frac{4}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{7}{18} a^{5} - \frac{1}{6} a^{4} + \frac{1}{9} a^{3} - \frac{2}{9} a^{2} + \frac{5}{18} a - \frac{1}{6}$, $\frac{1}{35920926} a^{17} + \frac{880391}{35920926} a^{16} + \frac{270454}{17960463} a^{15} + \frac{1413913}{17960463} a^{14} + \frac{328547}{11973642} a^{13} + \frac{556469}{11973642} a^{12} - \frac{2859406}{17960463} a^{11} + \frac{2056736}{17960463} a^{10} + \frac{2885302}{17960463} a^{9} + \frac{8712263}{17960463} a^{8} + \frac{15190159}{35920926} a^{7} + \frac{171137}{17960463} a^{6} + \frac{8270173}{35920926} a^{5} - \frac{12204721}{35920926} a^{4} + \frac{2756855}{11973642} a^{3} + \frac{272962}{5986821} a^{2} + \frac{9768007}{35920926} a - \frac{654266}{1995607}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{569556}{1995607} a^{17} - \frac{203280}{1995607} a^{16} + \frac{3570616}{1995607} a^{15} - \frac{13727663}{5986821} a^{14} + \frac{17487510}{1995607} a^{13} - \frac{18111570}{1995607} a^{12} + \frac{38075500}{1995607} a^{11} - \frac{17898066}{1995607} a^{10} + \frac{41130458}{1995607} a^{9} - \frac{34173896}{5986821} a^{8} + \frac{19330452}{1995607} a^{7} + \frac{5336156}{1995607} a^{6} + \frac{2977070}{5986821} a^{5} + \frac{13815582}{1995607} a^{4} + \frac{7402348}{1995607} a^{3} + \frac{4271650}{1995607} a^{2} + \frac{5949654}{1995607} a + \frac{2184350}{1995607} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33659.9437841 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 18T36):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $S_3\wr C_2$ |
| Character table for $S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 9.3.34869635163.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.395307.1, 6.4.32019867.1 |
| Degree 9 sibling: | 9.3.34869635163.1 |
| Degree 12 siblings: | 12.6.11277990709674579.1, 12.0.5156831600217.1, 12.2.11277990709674579.1, 12.0.46411484401953.1, 12.0.12657677564169.1, 12.0.1025271882697689.2 |
| Degree 18 siblings: | Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.11 | $x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |