Normalized defining polynomial
\( x^{18} + 109359 x^{12} + 354417390 x^{6} + 291038813883 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3266961213891533812087277880596312351679162976508187=-\,3^{27}\cdot 1657^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $727.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{423} a^{7} + \frac{1}{3} a^{5} + \frac{61}{141} a$, $\frac{1}{423} a^{8} + \frac{61}{141} a^{2}$, $\frac{1}{846} a^{9} - \frac{1}{18} a^{6} - \frac{1}{3} a^{4} - \frac{40}{141} a^{3} - \frac{1}{6}$, $\frac{1}{846} a^{10} - \frac{1}{846} a^{7} + \frac{1}{3} a^{5} - \frac{40}{141} a^{4} - \frac{61}{282} a$, $\frac{1}{2538} a^{11} - \frac{1}{846} a^{8} + \frac{101}{423} a^{5} + \frac{1}{3} a^{3} - \frac{61}{282} a^{2}$, $\frac{1}{206088138} a^{12} + \frac{1}{2538} a^{10} - \frac{1}{846} a^{7} - \frac{2516131}{68696046} a^{6} + \frac{1}{3} a^{5} + \frac{101}{423} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{61}{282} a - \frac{94933}{487206}$, $\frac{1}{206088138} a^{13} - \frac{80101}{68696046} a^{7} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{6743887}{22898682} a$, $\frac{1}{9686142486} a^{14} + \frac{3005537}{3228714162} a^{8} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{217208471}{1076238054} a^{2}$, $\frac{1}{455248696842} a^{15} - \frac{19893145}{151749565614} a^{9} - \frac{1}{18} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{9148352467}{50583188538} a^{3} + \frac{1}{3}$, $\frac{1}{64190066254722} a^{16} - \frac{8988543595}{21396688751574} a^{10} - \frac{1}{1269} a^{8} - \frac{1}{846} a^{7} + \frac{1}{3} a^{5} + \frac{1333638650923}{7132229583858} a^{4} - \frac{202}{423} a^{2} + \frac{40}{141} a - \frac{1}{3}$, $\frac{1}{3016933113971934} a^{17} + \frac{8151525337}{502822185661989} a^{11} - \frac{1}{2538} a^{9} - \frac{1}{18} a^{6} + \frac{99161525283415}{335214790441326} a^{5} - \frac{1}{3} a^{4} - \frac{101}{423} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{6}$
Class group and class number
$C_{2}\times C_{2}\times C_{1050}\times C_{2470650}$, which has order $10376730000$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{16861062846} a^{15} + \frac{55784}{8430531423} a^{9} + \frac{180360033}{5620354282} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1266915384.7466033 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.8236947.1 x3, 3.3.222397569.1, 6.0.203541887642427.1, 6.0.148382036091329283.2, 6.0.54042609267.2 x2, 9.3.32999804109981894517713027.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 1657 | Data not computed | ||||||