Normalized defining polynomial
\( x^{18} + 20 x^{16} + 156 x^{14} + 1645 x^{12} + 5776 x^{10} + 32200 x^{8} + 36851 x^{6} + 291260 x^{4} + 564716 x^{2} + 471875 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-326499494057574490808000000000=-\,2^{12}\cdot 5^{9}\cdot 151^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{4} - \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{5} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2220} a^{12} + \frac{22}{555} a^{10} + \frac{32}{555} a^{8} + \frac{67}{185} a^{6} - \frac{211}{555} a^{4} - \frac{1}{2} a^{3} + \frac{67}{555} a^{2} - \frac{187}{444}$, $\frac{1}{11100} a^{13} + \frac{31}{1110} a^{11} - \frac{269}{5550} a^{9} - \frac{1}{2} a^{8} + \frac{6}{185} a^{7} - \frac{1}{2} a^{6} + \frac{799}{5550} a^{5} - \frac{1}{2} a^{4} + \frac{493}{1110} a^{3} - \frac{1}{2} a^{2} - \frac{2711}{11100} a - \frac{1}{2}$, $\frac{1}{444166500} a^{14} + \frac{5329}{88833300} a^{12} + \frac{180221}{37013875} a^{10} + \frac{10392772}{22208325} a^{8} + \frac{17057792}{111041625} a^{6} - \frac{1}{2} a^{5} - \frac{2240251}{7402775} a^{4} - \frac{1}{2} a^{3} + \frac{22956929}{444166500} a^{2} + \frac{203}{23532}$, $\frac{1}{444166500} a^{15} - \frac{1337}{44416650} a^{13} - \frac{5120999}{222083250} a^{11} + \frac{121671}{7402775} a^{9} - \frac{1}{2} a^{8} + \frac{13456442}{111041625} a^{7} - \frac{1}{2} a^{6} - \frac{19835903}{44416650} a^{5} + \frac{47766229}{444166500} a^{3} - \frac{1}{2} a^{2} + \frac{24793}{98050} a$, $\frac{1}{8047852813500} a^{16} - \frac{1}{80478528135} a^{14} - \frac{1560776623}{8047852813500} a^{12} - \frac{1093636643}{80478528135} a^{10} - \frac{198086392761}{670654401125} a^{8} - \frac{1}{2} a^{7} - \frac{2028041787}{134130880225} a^{6} - \frac{835111004457}{2682617604500} a^{4} - \frac{1}{2} a^{3} + \frac{48825884867}{134130880225} a^{2} + \frac{40010527}{426376308}$, $\frac{1}{8047852813500} a^{17} - \frac{1}{80478528135} a^{15} - \frac{36904351}{2682617604500} a^{13} + \frac{3401560424}{80478528135} a^{11} + \frac{418717646}{54377383875} a^{9} - \frac{1}{2} a^{8} + \frac{6672339633}{134130880225} a^{7} + \frac{38417273897}{217509535500} a^{5} - \frac{1}{2} a^{4} + \frac{101525683931}{402392640675} a^{3} + \frac{515691}{96030700} a$
Class group and class number
$C_{3}\times C_{12}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7146431.9696 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-755}) \), 3.1.3020.2 x3, 3.1.3020.3 x3, 3.1.3020.1 x3, 3.1.755.1 x3, 6.0.6885902000.2, 6.0.6885902000.3, 6.0.6885902000.1, 6.0.430368875.1, 9.1.20795424040000.2 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $151$ | 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |