Normalized defining polynomial
\( x^{18} + 516 x^{16} + 91332 x^{14} + 7580040 x^{12} + 336547584 x^{10} + 8434990080 x^{8} + 119555334144 x^{6} + 914455166976 x^{4} + 3376449847296 x^{2} + 4501933129728 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3251700921275639876819745944740786500431511552=-\,2^{27}\cdot 3^{27}\cdot 43^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $337.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3096=2^{3}\cdot 3^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3096}(1,·)$, $\chi_{3096}(515,·)$, $\chi_{3096}(2113,·)$, $\chi_{3096}(1033,·)$, $\chi_{3096}(1547,·)$, $\chi_{3096}(2579,·)$, $\chi_{3096}(337,·)$, $\chi_{3096}(467,·)$, $\chi_{3096}(1369,·)$, $\chi_{3096}(1499,·)$, $\chi_{3096}(2401,·)$, $\chi_{3096}(2531,·)$, $\chi_{3096}(2243,·)$, $\chi_{3096}(2065,·)$, $\chi_{3096}(49,·)$, $\chi_{3096}(179,·)$, $\chi_{3096}(1081,·)$, $\chi_{3096}(1211,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{1032} a^{6}$, $\frac{1}{2064} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8256} a^{8} - \frac{1}{2064} a^{6} + \frac{1}{16} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{16512} a^{9} - \frac{1}{4128} a^{7} + \frac{1}{32} a^{5} - \frac{3}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{66048} a^{10} - \frac{1}{16512} a^{8} - \frac{7}{16512} a^{6} - \frac{3}{64} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{132096} a^{11} - \frac{1}{33024} a^{9} - \frac{7}{33024} a^{7} + \frac{13}{128} a^{5} - \frac{1}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{1090584576} a^{12} - \frac{1}{704512} a^{10} - \frac{47}{2113536} a^{8} - \frac{439}{1056768} a^{6} - \frac{61}{512} a^{4} + \frac{21}{128} a^{2} - \frac{7}{16}$, $\frac{1}{2181169152} a^{13} - \frac{1}{1409024} a^{11} - \frac{47}{4227072} a^{9} - \frac{439}{2113536} a^{7} + \frac{67}{1024} a^{5} + \frac{21}{256} a^{3} - \frac{7}{32} a$, $\frac{1}{61072736256} a^{14} + \frac{5}{15268184064} a^{12} - \frac{19}{5636096} a^{10} + \frac{89}{59179008} a^{8} + \frac{725}{3698688} a^{6} + \frac{27}{1024} a^{4} + \frac{141}{896} a^{2} - \frac{11}{28}$, $\frac{1}{122145472512} a^{15} + \frac{5}{30536368128} a^{13} - \frac{19}{11272192} a^{11} + \frac{89}{118358016} a^{9} + \frac{725}{7397376} a^{7} + \frac{27}{2048} a^{5} + \frac{141}{1792} a^{3} - \frac{11}{56} a$, $\frac{1}{86435510750281728} a^{16} + \frac{147641}{21608877687570432} a^{14} - \frac{6999103}{21608877687570432} a^{12} - \frac{139488575}{83755339874304} a^{10} + \frac{34244643}{872451457024} a^{8} + \frac{6765223}{30434353152} a^{6} + \frac{30634423}{1268098048} a^{4} + \frac{15069401}{79256128} a^{2} + \frac{2118825}{4953508}$, $\frac{1}{172871021500563456} a^{17} + \frac{147641}{43217755375140864} a^{15} - \frac{6999103}{43217755375140864} a^{13} - \frac{139488575}{167510679748608} a^{11} + \frac{34244643}{1744902914048} a^{9} + \frac{6765223}{60868706304} a^{7} - \frac{286390089}{2536196096} a^{5} + \frac{15069401}{158512256} a^{3} + \frac{2118825}{9907016} a$
Class group and class number
$C_{2}\times C_{2}\times C_{146}\times C_{198268}$, which has order $115788512$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10847494.59839338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-258}) \), \(\Q(\zeta_{9})^+\), 3.3.149769.1, 3.3.149769.2, 3.3.1849.1, 6.0.801247375872.6, 6.0.1481506397987328.2, 6.0.1481506397987328.1, 6.0.2032244716032.2, 9.9.3359431500123609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||