Normalized defining polynomial
\( x^{18} - 7 x^{17} + 112 x^{16} - 602 x^{15} + 5587 x^{14} - 24267 x^{13} + 166052 x^{12} - 592865 x^{11} + 3262588 x^{10} - 9555455 x^{9} + 44088281 x^{8} - 103781941 x^{7} + 410585125 x^{6} - 741082426 x^{5} + 2545728128 x^{4} - 3182071487 x^{3} + 9558403988 x^{2} - 6299768998 x + 16620397249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-322803575628362753619753567652073327=-\,19^{16}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(893=19\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{893}(704,·)$, $\chi_{893}(1,·)$, $\chi_{893}(518,·)$, $\chi_{893}(328,·)$, $\chi_{893}(330,·)$, $\chi_{893}(140,·)$, $\chi_{893}(845,·)$, $\chi_{893}(142,·)$, $\chi_{893}(847,·)$, $\chi_{893}(657,·)$, $\chi_{893}(283,·)$, $\chi_{893}(93,·)$, $\chi_{893}(612,·)$, $\chi_{893}(422,·)$, $\chi_{893}(424,·)$, $\chi_{893}(234,·)$, $\chi_{893}(377,·)$, $\chi_{893}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{30842318782880889138534410535178268647280406237534945274681811} a^{17} - \frac{469750728531593939920515600839328318930248141270424177690833}{30842318782880889138534410535178268647280406237534945274681811} a^{16} + \frac{6457285124165235285174031746295470027323375841206324635807613}{30842318782880889138534410535178268647280406237534945274681811} a^{15} + \frac{11381217484306730209370460861547182156299915912127476524968097}{30842318782880889138534410535178268647280406237534945274681811} a^{14} - \frac{11573967423652202299112676806138818211523678272466883201279239}{30842318782880889138534410535178268647280406237534945274681811} a^{13} - \frac{11115207560916024212302199113996684310299562668279426328973952}{30842318782880889138534410535178268647280406237534945274681811} a^{12} + \frac{12583503049649324852524319484759346533801049791813288363353479}{30842318782880889138534410535178268647280406237534945274681811} a^{11} + \frac{332839145298256279797986575379621488021225974019812306002056}{833576183321105111852281365815628882358929898311755277694103} a^{10} - \frac{6393490498796527543922784105764280043663576541632772798416438}{30842318782880889138534410535178268647280406237534945274681811} a^{9} - \frac{10957658441084305966973247333655086093653399732232732096564252}{30842318782880889138534410535178268647280406237534945274681811} a^{8} - \frac{4390605159900554610162989312252137812938474010809679121544660}{30842318782880889138534410535178268647280406237534945274681811} a^{7} - \frac{4962971937074626170338292323116149763458865605945778998560529}{30842318782880889138534410535178268647280406237534945274681811} a^{6} + \frac{5162944625102315474771005425867494558228223878702515965446972}{30842318782880889138534410535178268647280406237534945274681811} a^{5} + \frac{6396597964200463551146523706873813771290661782267455277504142}{30842318782880889138534410535178268647280406237534945274681811} a^{4} - \frac{7939082058396512298225252011809833815075136077858145159664135}{30842318782880889138534410535178268647280406237534945274681811} a^{3} + \frac{12771648913256077996116901089625320246363023816111851216075160}{30842318782880889138534410535178268647280406237534945274681811} a^{2} + \frac{13806405400263415973584454711840114301413723849902823306826247}{30842318782880889138534410535178268647280406237534945274681811} a - \frac{13249725876982095381098200343711073853188098462242353303846828}{30842318782880889138534410535178268647280406237534945274681811}$
Class group and class number
$C_{638885}$, which has order $638885$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 3.3.361.1, 6.0.13530317183.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 47 | Data not computed | ||||||