Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 198 x^{14} - 210 x^{13} + 382 x^{12} - 1824 x^{11} + 5055 x^{10} - 7983 x^{9} + 10269 x^{8} - 14568 x^{7} + 39154 x^{6} - 78474 x^{5} + 93006 x^{4} - 67032 x^{3} + 36657 x^{2} - 14553 x + 3267 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3221608091576399017168416768=-\,2^{12}\cdot 3^{9}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{5}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{7} - \frac{1}{6} a^{5} - \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{10} + \frac{5}{72} a^{6} + \frac{1}{4} a^{5} - \frac{5}{18} a^{4} + \frac{1}{4} a^{3} - \frac{7}{24} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{11} + \frac{5}{72} a^{7} - \frac{1}{12} a^{6} - \frac{5}{18} a^{5} - \frac{1}{12} a^{4} - \frac{7}{24} a^{3} - \frac{1}{12} a^{2} - \frac{3}{8} a$, $\frac{1}{3168} a^{14} - \frac{7}{3168} a^{13} + \frac{1}{176} a^{12} - \frac{17}{3168} a^{11} - \frac{37}{3168} a^{10} - \frac{5}{176} a^{9} + \frac{29}{3168} a^{8} - \frac{5}{3168} a^{7} - \frac{7}{1056} a^{6} + \frac{745}{1584} a^{5} - \frac{263}{3168} a^{4} + \frac{41}{1056} a^{3} - \frac{13}{528} a^{2} + \frac{137}{352} a - \frac{7}{32}$, $\frac{1}{136224} a^{15} + \frac{7}{68112} a^{14} - \frac{833}{136224} a^{13} - \frac{739}{136224} a^{12} - \frac{1561}{68112} a^{11} - \frac{1879}{136224} a^{10} - \frac{5557}{136224} a^{9} - \frac{377}{34056} a^{8} - \frac{2219}{68112} a^{7} + \frac{1357}{136224} a^{6} + \frac{59627}{136224} a^{5} - \frac{1093}{17028} a^{4} - \frac{16765}{45408} a^{3} - \frac{18307}{45408} a^{2} - \frac{475}{1892} a - \frac{135}{1376}$, $\frac{1}{77766467328} a^{16} - \frac{1}{9720808416} a^{15} - \frac{2067349}{19441616832} a^{14} + \frac{18697}{25118368} a^{13} + \frac{141467581}{38883233664} a^{12} - \frac{38283253}{1215101052} a^{11} - \frac{1441657}{147284976} a^{10} + \frac{9789445}{441854928} a^{9} + \frac{2761990591}{77766467328} a^{8} + \frac{1983039}{135011228} a^{7} + \frac{140840731}{4860404208} a^{6} - \frac{2593370851}{9720808416} a^{5} + \frac{1796488981}{38883233664} a^{4} + \frac{1519637279}{3240269472} a^{3} - \frac{917323003}{3240269472} a^{2} - \frac{31991631}{1080089824} a + \frac{245854395}{785519872}$, $\frac{1}{4588221572352} a^{17} + \frac{7}{1529407190784} a^{16} + \frac{357463}{382351797696} a^{15} - \frac{69030113}{1147055393088} a^{14} + \frac{1778570119}{764703595392} a^{13} + \frac{649783483}{208555526016} a^{12} + \frac{8837553497}{573527696544} a^{11} + \frac{1639264039}{52138881504} a^{10} + \frac{20245833879}{509802396928} a^{9} + \frac{60950595851}{4588221572352} a^{8} - \frac{1764144355}{63725299616} a^{7} + \frac{1010512499}{13034720376} a^{6} - \frac{240257548615}{2294110786176} a^{5} + \frac{7508570075}{38883233664} a^{4} + \frac{48121670207}{191175898848} a^{3} + \frac{487838964}{1991415613} a^{2} - \frac{67833839239}{509802396928} a - \frac{1021703833}{46345672448}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1049318}{1991415613} a^{17} + \frac{8919203}{1991415613} a^{16} - \frac{326409544}{17922740517} a^{15} + \frac{280871680}{5974246839} a^{14} - \frac{1393520716}{17922740517} a^{13} + \frac{382702684}{5974246839} a^{12} - \frac{2811832240}{17922740517} a^{11} + \frac{474114896}{543113349} a^{10} - \frac{39374016410}{17922740517} a^{9} + \frac{17657829122}{5974246839} a^{8} - \frac{64141032752}{17922740517} a^{7} + \frac{32397695960}{5974246839} a^{6} - \frac{28233308788}{1629340047} a^{5} + \frac{293186240}{9205311} a^{4} - \frac{179252247200}{5974246839} a^{3} + \frac{30553397024}{1991415613} a^{2} - \frac{13855403030}{1991415613} a + \frac{430824325}{181037783} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2928309.61291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.22188.1 x3, 3.3.1849.1, 6.0.1476922032.1, 6.0.92307627.1, 6.0.798768.2 x2, 9.3.10923315348672.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.798768.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $43$ | 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |