Normalized defining polynomial
\( x^{18} - 7 x^{17} + 129 x^{16} - 682 x^{15} + 7559 x^{14} - 33625 x^{13} + 283423 x^{12} - 1103801 x^{11} + 7509688 x^{10} - 25521676 x^{9} + 142410717 x^{8} - 411169037 x^{7} + 1882145661 x^{6} - 4387355467 x^{5} + 16263505093 x^{4} - 27720649061 x^{3} + 80685361261 x^{2} - 77705750398 x + 166746964831 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-319780656433835079525248091919941689225216=-\,2^{12}\cdot 37^{14}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $202.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{878770834132281201719097847525009748434394727811434726829033701} a^{17} - \frac{98629557173111968806383598396377161557939939895953209030476195}{878770834132281201719097847525009748434394727811434726829033701} a^{16} - \frac{143256474065506441484471994055451528561266411875161138761888330}{878770834132281201719097847525009748434394727811434726829033701} a^{15} + \frac{28298498230677332964688025627743155262489152015799764274680245}{878770834132281201719097847525009748434394727811434726829033701} a^{14} + \frac{28736709950624738937076416599648013939065507938945497670904450}{292923611377427067239699282508336582811464909270478242276344567} a^{13} + \frac{135220630875850233349613738376805920105153555100056374388186467}{878770834132281201719097847525009748434394727811434726829033701} a^{12} - \frac{109840777647341666863746491894408213531543374513450470639013636}{292923611377427067239699282508336582811464909270478242276344567} a^{11} + \frac{431538868720782523190583913451914440601202348702681089079179520}{878770834132281201719097847525009748434394727811434726829033701} a^{10} + \frac{363972872327317323944976123583529994984332378909220126945600656}{878770834132281201719097847525009748434394727811434726829033701} a^{9} + \frac{106267729429662549119788571714734087722287740539712367183698797}{292923611377427067239699282508336582811464909270478242276344567} a^{8} - \frac{78509493842100055895093956017100520249419942002590966209212224}{292923611377427067239699282508336582811464909270478242276344567} a^{7} - \frac{120601101731043799304972986221098852129815377998942917727856241}{878770834132281201719097847525009748434394727811434726829033701} a^{6} + \frac{5493552579777158799188976488420245488486554346637421772232066}{292923611377427067239699282508336582811464909270478242276344567} a^{5} - \frac{364752382659071507959287355436294913401867479195910156771643436}{878770834132281201719097847525009748434394727811434726829033701} a^{4} + \frac{727863090596764436201669709723932024506935479519324436350101}{30302442556285558679968891293965853394289473372808094028587369} a^{3} + \frac{326488530229200805996609709939834474077818664763555613344480461}{878770834132281201719097847525009748434394727811434726829033701} a^{2} + \frac{280899374055589005115414287516825100087590320966021553099745505}{878770834132281201719097847525009748434394727811434726829033701} a + \frac{3870783759841862630791883736142550466732221722935692368859423}{30302442556285558679968891293965853394289473372808094028587369}$
Class group and class number
$C_{6}\times C_{6}\times C_{649404}$, which has order $23378544$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 3.3.148.1, 3.3.1369.1, 6.0.4498621616.2, 6.0.384913312019.2, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $59$ | 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 59.12.6.1 | $x^{12} + 9447434 x^{6} - 714924299 x^{2} + 22313502296089$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |