Normalized defining polynomial
\( x^{18} - 7 x^{17} + 31 x^{16} - 88 x^{15} + 174 x^{14} - 234 x^{13} + 140 x^{12} + 226 x^{11} - 813 x^{10} + 1245 x^{9} - 1067 x^{8} + 242 x^{7} + 856 x^{6} - 1558 x^{5} + 1590 x^{4} - 1116 x^{3} + 549 x^{2} - 171 x + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3193138226663532348309504=-\,2^{20}\cdot 3^{6}\cdot 11^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{14} + \frac{5}{18} a^{10} - \frac{1}{3} a^{7} + \frac{7}{18} a^{6} - \frac{1}{3} a^{5} + \frac{1}{18} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{13969393882722} a^{17} + \frac{89136828487}{13969393882722} a^{16} - \frac{491049559579}{6984696941361} a^{15} - \frac{2216892104}{69155415261} a^{14} + \frac{26488954250}{776077437929} a^{13} + \frac{79467930461}{1552154875858} a^{12} + \frac{787874511994}{6984696941361} a^{11} + \frac{4541213456507}{13969393882722} a^{10} - \frac{416112695819}{4656464627574} a^{9} + \frac{966180203813}{4656464627574} a^{8} + \frac{2063215316672}{6984696941361} a^{7} - \frac{3782788314143}{13969393882722} a^{6} + \frac{3032370942641}{6984696941361} a^{5} + \frac{424516351757}{6984696941361} a^{4} - \frac{905224723552}{2328232313787} a^{3} - \frac{5265579175}{15367870058} a^{2} - \frac{677557431359}{1552154875858} a + \frac{354359718452}{776077437929}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 170014.48092527897 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.484.1, 3.1.1452.1, 6.0.23191344.1, 6.0.2576816.1, 9.1.48980118528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.6.5.2 | $x^{6} + 33$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |