Normalized defining polynomial
\( x^{18} - x^{17} - 984 x^{16} + 2510 x^{15} + 399126 x^{14} - 1518902 x^{13} - 79528672 x^{12} + 365710044 x^{11} + 8041909773 x^{10} - 37726851253 x^{9} - 388634200160 x^{8} + 1634195356934 x^{7} + 9217764115764 x^{6} - 27873163776444 x^{5} - 74670398987968 x^{4} - 46074585055336 x^{3} + 719202938309504 x^{2} + 674017524612704 x + 783773403510784 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-317180535547366983497681454181403157145875143430046117888=-\,2^{12}\cdot 7^{15}\cdot 19^{6}\cdot 211^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1377.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{7} + \frac{1}{16} a^{6} + \frac{1}{16} a^{5} + \frac{1}{16} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{8} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{11} - \frac{1}{32} a^{8} - \frac{1}{64} a^{7} + \frac{1}{32} a^{6} - \frac{1}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{12} - \frac{1}{256} a^{11} + \frac{1}{128} a^{10} - \frac{3}{128} a^{9} + \frac{1}{256} a^{8} + \frac{7}{256} a^{7} - \frac{1}{16} a^{6} - \frac{7}{64} a^{5} + \frac{15}{64} a^{4} - \frac{13}{64} a^{3} - \frac{3}{16} a^{2} + \frac{5}{16} a$, $\frac{1}{256} a^{13} + \frac{1}{256} a^{11} - \frac{1}{64} a^{10} - \frac{5}{256} a^{9} - \frac{1}{32} a^{8} + \frac{7}{256} a^{7} - \frac{7}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{32} a^{4} + \frac{15}{64} a^{3} - \frac{3}{8} a^{2} + \frac{5}{16} a$, $\frac{1}{256} a^{14} + \frac{1}{256} a^{11} + \frac{1}{256} a^{10} - \frac{1}{128} a^{9} - \frac{1}{128} a^{8} - \frac{7}{256} a^{7} - \frac{1}{16} a^{6} + \frac{5}{64} a^{5} - \frac{1}{16} a^{4} - \frac{15}{64} a^{3} + \frac{1}{8} a^{2} + \frac{3}{16} a$, $\frac{1}{82432} a^{15} + \frac{33}{41216} a^{14} - \frac{121}{82432} a^{13} - \frac{5}{5888} a^{12} + \frac{381}{82432} a^{11} - \frac{15}{5888} a^{10} + \frac{97}{82432} a^{9} + \frac{1}{5888} a^{8} + \frac{251}{41216} a^{7} + \frac{47}{736} a^{6} - \frac{1121}{20608} a^{5} - \frac{259}{1472} a^{4} - \frac{1919}{10304} a^{3} + \frac{65}{368} a^{2} + \frac{433}{2576} a + \frac{29}{161}$, $\frac{1}{866195456} a^{16} - \frac{2283}{866195456} a^{15} + \frac{236907}{123742208} a^{14} - \frac{245209}{866195456} a^{13} - \frac{618293}{866195456} a^{12} - \frac{2722851}{866195456} a^{11} - \frac{6461813}{866195456} a^{10} - \frac{8276551}{866195456} a^{9} + \frac{615}{588448} a^{8} + \frac{12871989}{433097728} a^{7} - \frac{20676181}{216548864} a^{6} - \frac{13202493}{216548864} a^{5} + \frac{13430609}{54137216} a^{4} - \frac{17137221}{108274432} a^{3} + \frac{5395771}{13534304} a^{2} + \frac{9224879}{27068608} a - \frac{34700}{422947}$, $\frac{1}{4404494955201184495356647409304090297573990916458197262310478424733455578966339563103298523565221306368} a^{17} + \frac{1033286861991797275049172680167967534703324557432796374935143264961622668432759866315543367501}{2202247477600592247678323704652045148786995458229098631155239212366727789483169781551649261782610653184} a^{16} - \frac{3454218290300073449878529902304709901123111721958690579176546248002613770177104285738611814325653}{2202247477600592247678323704652045148786995458229098631155239212366727789483169781551649261782610653184} a^{15} - \frac{325376323530162042057974400692224887188172091383341196879858435712505586525665128593544527105669155}{275280934700074030959790463081505643598374432278637328894404901545840973685396222693956157722826331648} a^{14} - \frac{1997914725545403118171600964274371358288304340507698289126693822613511095520302856952032195419799}{8502886013901900570186578010239556559023148487371037185927564526512462507657026183597101396844056576} a^{13} - \frac{1204466795726978863715472999975617710888947779366682837152503363376106965224714431959067410903168821}{1101123738800296123839161852326022574393497729114549315577619606183363894741584890775824630891305326592} a^{12} + \frac{134421516237213656157254638038372391041648066132522423650474207361406495727661472067892607252071203}{157303391257185160548451693189431796341928247016364187939659943740480556391654984396546375841615046656} a^{11} + \frac{105660550478138786881710796964418164713034913087124605502598158070817724865986151122084664503523621}{14880050524328325997826511517919223978290509852899315075373237921396809388399795821294927444477099008} a^{10} + \frac{8822066586828585802841667819622700416257284945474085301445929658061265315550114317950829608993048419}{629213565028740642193806772757727185367712988065456751758639774961922225566619937586185503366460186624} a^{9} - \frac{20495627383764008688329581039640634792865018661438901990730559903419730185358243614146199218133352007}{2202247477600592247678323704652045148786995458229098631155239212366727789483169781551649261782610653184} a^{8} - \frac{6560259570899421557750078595947653522021110426759758015324679311561815226306621199305998285243879051}{314606782514370321096903386378863592683856494032728375879319887480961112783309968793092751683230093312} a^{7} + \frac{1800878071185946729314416028994978086810664404716415528501861106666510393995999042583291218213248673}{550561869400148061919580926163011287196748864557274657788809803091681947370792445387912315445652663296} a^{6} + \frac{8071035822908790386502347713287258724443585135904052282266042062821219654706006316757968959483147573}{157303391257185160548451693189431796341928247016364187939659943740480556391654984396546375841615046656} a^{5} + \frac{216137384426656168812080709651338970099580434552718069161280278100067492706234004545828418605312433}{4872228932744673114332574567814259178732290836790041219369998257448512808591083587503648809253563392} a^{4} - \frac{1398714919938789073675810866902980971557695544346642527780439227650429823080142953337115695427705465}{14880050524328325997826511517919223978290509852899315075373237921396809388399795821294927444477099008} a^{3} - \frac{48864683459841225716086227447287260818347259040348056044320002104773094483210278401963650180330577631}{137640467350037015479895231540752821799187216139318664447202450772920486842698111346978078861413165824} a^{2} + \frac{37696700183444854435756632299260279975897594746430175190825013754713271956110986316448354298512857175}{137640467350037015479895231540752821799187216139318664447202450772920486842698111346978078861413165824} a - \frac{491635555056436475161790629747211147109258183915771130928381811727392283974262077627042058146884841}{2150632302344328366873362992824262840612300252176854131987538293326882606917157989796532482209580716}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{6906690}$, which has order $15104931030$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 182929425339792.53 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.2181529.1, 3.3.112252.1, 6.0.88203580528.1, 6.0.33313481444887.3, 9.9.6731382107576072178358049728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $7$ | 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 211 | Data not computed | ||||||