Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 36 x^{15} + 147 x^{14} - 515 x^{13} + 1616 x^{12} - 5017 x^{11} + 14283 x^{10} - 34858 x^{9} + 73403 x^{8} - 123691 x^{7} + 166209 x^{6} - 187176 x^{5} + 165508 x^{4} - 106788 x^{3} + 65288 x^{2} + 9020 x + 1804 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3161905054840233264308432896=-\,2^{12}\cdot 11^{9}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{198} a^{12} + \frac{1}{99} a^{11} + \frac{5}{99} a^{10} - \frac{7}{198} a^{9} - \frac{2}{99} a^{8} + \frac{4}{99} a^{7} - \frac{7}{66} a^{6} + \frac{26}{99} a^{5} + \frac{43}{99} a^{4} - \frac{1}{6} a^{3} + \frac{19}{99} a^{2} - \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{594} a^{13} - \frac{8}{297} a^{11} - \frac{1}{22} a^{10} + \frac{16}{297} a^{9} + \frac{19}{297} a^{8} - \frac{37}{594} a^{7} + \frac{25}{297} a^{6} + \frac{10}{33} a^{5} + \frac{169}{594} a^{4} - \frac{1}{99} a^{3} - \frac{104}{297} a^{2} - \frac{7}{27} a - \frac{1}{27}$, $\frac{1}{1188} a^{14} - \frac{1}{1188} a^{12} + \frac{1}{396} a^{11} - \frac{4}{297} a^{10} - \frac{1}{1188} a^{9} - \frac{31}{1188} a^{8} - \frac{47}{594} a^{7} + \frac{7}{132} a^{6} - \frac{173}{1188} a^{5} - \frac{25}{99} a^{4} + \frac{419}{1188} a^{3} + \frac{109}{594} a^{2} - \frac{7}{54} a + \frac{1}{18}$, $\frac{1}{1188} a^{15} - \frac{1}{1188} a^{13} - \frac{1}{396} a^{12} - \frac{7}{297} a^{11} - \frac{61}{1188} a^{10} + \frac{1}{108} a^{9} - \frac{35}{594} a^{8} + \frac{5}{396} a^{7} - \frac{47}{1188} a^{6} + \frac{16}{33} a^{5} - \frac{97}{1188} a^{4} + \frac{104}{297} a^{3} - \frac{191}{594} a^{2} + \frac{1}{6} a - \frac{4}{9}$, $\frac{1}{1293732} a^{16} + \frac{133}{323433} a^{15} - \frac{5}{117612} a^{14} + \frac{3}{5324} a^{13} + \frac{614}{323433} a^{12} + \frac{1865}{39204} a^{11} - \frac{18581}{1293732} a^{10} + \frac{3919}{215622} a^{9} + \frac{5881}{1293732} a^{8} + \frac{4049}{39204} a^{7} + \frac{1516}{35937} a^{6} - \frac{280747}{1293732} a^{5} - \frac{63814}{323433} a^{4} - \frac{209065}{646866} a^{3} - \frac{154507}{646866} a^{2} - \frac{8231}{29403} a + \frac{5986}{29403}$, $\frac{1}{70121961960491008414836} a^{17} - \frac{7969733014294795}{23373987320163669471612} a^{16} - \frac{13306844417723556899}{70121961960491008414836} a^{15} - \frac{10303118609984772503}{70121961960491008414836} a^{14} - \frac{15270090614872103071}{70121961960491008414836} a^{13} + \frac{13584267385915484011}{17530490490122752103709} a^{12} + \frac{995620583472165833653}{70121961960491008414836} a^{11} - \frac{42067287996845962495}{1149540360008049318276} a^{10} + \frac{819200024812067236793}{35060980980245504207418} a^{9} - \frac{9276982766979911965651}{70121961960491008414836} a^{8} - \frac{2003463203460366686227}{23373987320163669471612} a^{7} - \frac{1922934167629039377664}{17530490490122752103709} a^{6} - \frac{353671768551564642965}{11686993660081834735806} a^{5} - \frac{5942833640442873669766}{17530490490122752103709} a^{4} + \frac{11182535442251883888245}{23373987320163669471612} a^{3} + \frac{7432648733778722483839}{17530490490122752103709} a^{2} + \frac{47392476896256457519}{96586724463486237486} a + \frac{474837439213720361305}{3187361907295045837038}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7560775.8741 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-451}) \), 3.1.451.1 x3, 6.0.91733851.1, 9.1.2647805875264.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |