Normalized defining polynomial
\( x^{18} - 15 x^{16} - 6 x^{15} + 162 x^{14} + 192 x^{13} - 1032 x^{12} - 3222 x^{11} + 2442 x^{10} + 28042 x^{9} + 34182 x^{8} - 85296 x^{7} - 251841 x^{6} - 140562 x^{5} + 260853 x^{4} + 730068 x^{3} + 946224 x^{2} + 563136 x + 123904 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31616164379840194492072800177879=-\,3^{31}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{36} a^{9} - \frac{1}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{12} a^{3} - \frac{1}{12} a + \frac{2}{9}$, $\frac{1}{36} a^{10} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{6} a^{5} - \frac{1}{12} a^{4} - \frac{1}{12} a^{2} + \frac{17}{36} a$, $\frac{1}{72} a^{11} - \frac{1}{24} a^{8} - \frac{1}{6} a^{6} + \frac{5}{24} a^{5} - \frac{1}{6} a^{3} + \frac{35}{72} a^{2} + \frac{1}{3}$, $\frac{1}{144} a^{12} - \frac{1}{144} a^{11} + \frac{1}{144} a^{9} + \frac{1}{48} a^{8} + \frac{1}{12} a^{7} - \frac{7}{48} a^{6} + \frac{7}{48} a^{5} - \frac{1}{6} a^{4} - \frac{37}{144} a^{3} + \frac{1}{144} a^{2} + \frac{1}{12} a - \frac{4}{9}$, $\frac{1}{144} a^{13} - \frac{1}{144} a^{11} + \frac{1}{144} a^{10} + \frac{5}{48} a^{8} + \frac{1}{48} a^{7} - \frac{1}{6} a^{6} - \frac{1}{48} a^{5} - \frac{13}{144} a^{4} - \frac{1}{6} a^{3} + \frac{13}{144} a^{2} + \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{288} a^{14} - \frac{1}{72} a^{10} + \frac{1}{16} a^{8} + \frac{1}{24} a^{7} - \frac{1}{6} a^{6} - \frac{1}{18} a^{5} - \frac{5}{24} a^{4} - \frac{1}{6} a^{3} - \frac{11}{32} a^{2} - \frac{35}{72} a + \frac{1}{3}$, $\frac{1}{12384} a^{15} - \frac{19}{12384} a^{14} + \frac{5}{2064} a^{13} + \frac{1}{3096} a^{12} - \frac{13}{2064} a^{11} + \frac{29}{6192} a^{10} - \frac{7}{2064} a^{9} + \frac{29}{344} a^{8} + \frac{67}{688} a^{7} - \frac{205}{3096} a^{6} - \frac{325}{6192} a^{5} + \frac{325}{2064} a^{4} + \frac{4505}{12384} a^{3} - \frac{25}{96} a^{2} + \frac{137}{3096} a - \frac{19}{129}$, $\frac{1}{148608} a^{16} - \frac{1}{148608} a^{15} - \frac{1}{2752} a^{14} - \frac{61}{18576} a^{13} + \frac{169}{74304} a^{12} + \frac{5}{24768} a^{11} + \frac{329}{74304} a^{10} - \frac{25}{9288} a^{9} + \frac{853}{8256} a^{8} + \frac{547}{18576} a^{7} + \frac{9323}{74304} a^{6} - \frac{257}{2752} a^{5} + \frac{11741}{148608} a^{4} + \frac{4249}{148608} a^{3} - \frac{3853}{12384} a^{2} + \frac{1165}{4644} a - \frac{364}{1161}$, $\frac{1}{3436276923890658121049856} a^{17} - \frac{228829472149653947}{572712820648443020174976} a^{16} - \frac{21515862088301815777}{3436276923890658121049856} a^{15} - \frac{808122273073773758227}{1718138461945329060524928} a^{14} + \frac{1491270124429793709847}{572712820648443020174976} a^{13} - \frac{2191783360128930071953}{859069230972664530262464} a^{12} - \frac{1992674128074679808183}{859069230972664530262464} a^{11} - \frac{505812966661453815737}{190904273549481006724992} a^{10} - \frac{4470514817182547234879}{1718138461945329060524928} a^{9} - \frac{1022587680735476557207}{29120990880429306110592} a^{8} + \frac{11252017110046472305541}{572712820648443020174976} a^{7} - \frac{168339063661734858689855}{859069230972664530262464} a^{6} - \frac{807087623848311951909661}{3436276923890658121049856} a^{5} + \frac{32852326026622913583061}{286356410324221510087488} a^{4} - \frac{1435132662084473800738817}{3436276923890658121049856} a^{3} + \frac{160866963215212599778813}{429534615486332265131232} a^{2} - \frac{8290350866163508129829}{23863034193685125840624} a + \frac{6161613785149604655292}{13422956733947883285351}$
Class group and class number
$C_{3}\times C_{468}$, which has order $1404$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63087923.79573219 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.13689.1, 3.1.4563.1, 6.0.812017791.2, 6.0.7308160119.1, 9.3.69259433447763.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||