Normalized defining polynomial
\( x^{18} - 6 x^{17} + 6 x^{16} + 20 x^{15} - 48 x^{14} - 96 x^{13} + 459 x^{12} + 66 x^{11} - 435 x^{10} + 664 x^{9} + 4833 x^{8} + 900 x^{7} + 287 x^{6} + 3024 x^{5} + 13032 x^{4} + 5976 x^{3} + 12069 x^{2} + 7938 x + 20331 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-316075500780176721688542927=-\,3^{24}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{108} a^{12} - \frac{1}{18} a^{11} - \frac{1}{12} a^{10} - \frac{2}{27} a^{9} + \frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{17}{108} a^{6} + \frac{1}{3} a^{5} + \frac{17}{36} a^{4} - \frac{23}{54} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a - \frac{1}{12}$, $\frac{1}{108} a^{13} - \frac{1}{12} a^{11} - \frac{2}{27} a^{10} - \frac{1}{12} a^{9} + \frac{1}{18} a^{8} - \frac{1}{108} a^{7} - \frac{2}{9} a^{6} - \frac{13}{36} a^{5} - \frac{5}{54} a^{4} - \frac{5}{36} a^{3} - \frac{1}{2} a^{2} - \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{108} a^{14} - \frac{2}{27} a^{11} + \frac{1}{18} a^{9} + \frac{2}{27} a^{8} - \frac{1}{18} a^{7} + \frac{2}{9} a^{6} + \frac{2}{27} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{1296} a^{15} - \frac{1}{1296} a^{14} + \frac{1}{1296} a^{13} - \frac{1}{648} a^{12} - \frac{55}{1296} a^{11} + \frac{53}{648} a^{10} + \frac{35}{1296} a^{9} - \frac{13}{648} a^{8} + \frac{101}{1296} a^{7} - \frac{35}{162} a^{6} + \frac{55}{1296} a^{5} + \frac{2}{81} a^{4} + \frac{149}{432} a^{3} + \frac{31}{72} a^{2} - \frac{5}{72} a + \frac{11}{48}$, $\frac{1}{1296} a^{16} - \frac{1}{1296} a^{13} + \frac{1}{432} a^{12} - \frac{31}{432} a^{11} + \frac{11}{432} a^{10} - \frac{13}{432} a^{9} + \frac{13}{432} a^{8} - \frac{35}{1296} a^{7} - \frac{23}{432} a^{6} + \frac{173}{432} a^{5} + \frac{299}{1296} a^{4} - \frac{17}{48} a^{3} + \frac{1}{9} a^{2} - \frac{25}{144} a + \frac{5}{16}$, $\frac{1}{2592663696458124629647536} a^{17} + \frac{14127287952783247595}{1296331848229062314823768} a^{16} - \frac{58093014840062120731}{2592663696458124629647536} a^{15} - \frac{1675661703615518375347}{432110616076354104941256} a^{14} + \frac{5600689782801526096409}{1296331848229062314823768} a^{13} - \frac{10424854950172293707689}{2592663696458124629647536} a^{12} - \frac{17677395554496168803353}{324082962057265578705942} a^{11} + \frac{37320697189940813017421}{2592663696458124629647536} a^{10} - \frac{18049282320713283759671}{648165924114531157411884} a^{9} - \frac{3849616075826525067031}{288073744050902736627504} a^{8} - \frac{98308680095825821029155}{1296331848229062314823768} a^{7} + \frac{384723707089409724865381}{2592663696458124629647536} a^{6} + \frac{15600459441043260219805}{162041481028632789352971} a^{5} + \frac{19805991507636888050857}{96024581350300912209168} a^{4} + \frac{18798696838637778286291}{96024581350300912209168} a^{3} - \frac{92634297885391852362119}{288073744050902736627504} a^{2} + \frac{999265645369158351701}{32008193783433637403056} a - \frac{7759090429498184638493}{32008193783433637403056}$
Class group and class number
$C_{15}$, which has order $15$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 483473.437416 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 3.1.3807.1 x3, \(\Q(\zeta_{9})^+\), 6.0.681182703.1, 6.0.681182703.2, 6.0.8409663.1 x2, 9.3.55175798943.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.8409663.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $47$ | 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |