Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 138 x^{15} + 279 x^{14} - 369 x^{13} + 318 x^{12} - 315 x^{11} + 1413 x^{10} - 5320 x^{9} + 12681 x^{8} - 22095 x^{7} + 29967 x^{6} - 25938 x^{5} + 5652 x^{4} + 8688 x^{3} - 2448 x^{2} - 396 x + 484 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-315164892649262158461997559808=-\,2^{12}\cdot 3^{33}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{45} a^{9} - \frac{1}{45} a^{8} + \frac{1}{45} a^{7} + \frac{2}{45} a^{6} + \frac{7}{45} a^{5} - \frac{16}{45} a^{4} + \frac{13}{45} a^{3} + \frac{14}{45} a^{2} - \frac{1}{9} a + \frac{1}{5}$, $\frac{1}{45} a^{10} + \frac{1}{15} a^{7} - \frac{2}{15} a^{6} - \frac{1}{5} a^{5} - \frac{1}{15} a^{4} - \frac{1}{15} a^{3} + \frac{1}{5} a^{2} + \frac{4}{45} a - \frac{2}{15}$, $\frac{1}{45} a^{11} - \frac{2}{45} a^{8} - \frac{1}{45} a^{7} + \frac{1}{45} a^{6} - \frac{13}{45} a^{5} + \frac{7}{45} a^{4} - \frac{16}{45} a^{3} - \frac{16}{45} a^{2} + \frac{14}{45} a - \frac{1}{9}$, $\frac{1}{270} a^{12} + \frac{1}{270} a^{9} + \frac{1}{45} a^{8} - \frac{1}{45} a^{7} + \frac{11}{90} a^{6} + \frac{8}{45} a^{5} - \frac{14}{45} a^{4} - \frac{77}{270} a^{3} + \frac{1}{45} a^{2} + \frac{4}{9} a - \frac{19}{135}$, $\frac{1}{540} a^{13} + \frac{1}{540} a^{10} + \frac{1}{20} a^{7} + \frac{1}{15} a^{6} + \frac{4}{15} a^{5} + \frac{19}{540} a^{4} - \frac{2}{15} a^{3} + \frac{1}{15} a^{2} + \frac{131}{270} a + \frac{2}{5}$, $\frac{1}{2700} a^{14} + \frac{1}{1350} a^{13} + \frac{1}{1350} a^{12} + \frac{1}{108} a^{11} - \frac{1}{270} a^{10} + \frac{13}{1350} a^{9} + \frac{1}{100} a^{8} - \frac{1}{150} a^{7} - \frac{1}{50} a^{6} - \frac{593}{2700} a^{5} + \frac{289}{1350} a^{4} + \frac{451}{1350} a^{3} - \frac{11}{270} a^{2} - \frac{313}{675} a + \frac{56}{675}$, $\frac{1}{2700} a^{15} - \frac{1}{1350} a^{13} + \frac{1}{2700} a^{12} - \frac{7}{1350} a^{10} + \frac{1}{180} a^{9} - \frac{2}{75} a^{8} - \frac{7}{50} a^{7} - \frac{61}{540} a^{6} - \frac{31}{75} a^{5} + \frac{233}{1350} a^{4} + \frac{113}{1350} a^{3} - \frac{17}{75} a^{2} - \frac{143}{675} a - \frac{49}{225}$, $\frac{1}{16200} a^{16} + \frac{1}{16200} a^{15} - \frac{7}{16200} a^{13} - \frac{1}{648} a^{12} + \frac{1}{450} a^{11} - \frac{149}{16200} a^{10} + \frac{17}{3240} a^{9} + \frac{7}{225} a^{8} - \frac{449}{16200} a^{7} - \frac{2519}{16200} a^{6} + \frac{139}{450} a^{5} - \frac{791}{8100} a^{4} + \frac{646}{2025} a^{3} + \frac{16}{75} a^{2} - \frac{733}{2025} a - \frac{223}{810}$, $\frac{1}{412843959000} a^{17} - \frac{1391279}{206421979500} a^{16} - \frac{55112903}{412843959000} a^{15} - \frac{52259851}{412843959000} a^{14} + \frac{166493879}{206421979500} a^{13} - \frac{34446781}{412843959000} a^{12} - \frac{3031134173}{412843959000} a^{11} - \frac{1115574689}{206421979500} a^{10} - \frac{22019455}{3302751672} a^{9} + \frac{2511859727}{82568791800} a^{8} + \frac{29002923553}{206421979500} a^{7} + \frac{65562917941}{412843959000} a^{6} - \frac{40536095351}{206421979500} a^{5} + \frac{81986719}{1876563450} a^{4} + \frac{16552546579}{51605494875} a^{3} - \frac{4988304029}{10321098975} a^{2} - \frac{1820351201}{51605494875} a + \frac{1475727119}{9382817250}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1408897}{5096839000} a^{17} + \frac{31378883}{15290517000} a^{16} - \frac{66212771}{7645258500} a^{15} + \frac{299763671}{15290517000} a^{14} - \frac{980199139}{45871551000} a^{13} - \frac{210458471}{22935775500} a^{12} + \frac{2735295419}{45871551000} a^{11} - \frac{217190789}{5096839000} a^{10} - \frac{381713957}{1529051700} a^{9} + \frac{2662205437}{3058103400} a^{8} - \frac{6797093357}{5096839000} a^{7} + \frac{2620921159}{2548419500} a^{6} + \frac{400444193}{637104875} a^{5} - \frac{2024948501}{417014100} a^{4} + \frac{102313447901}{11467887750} a^{3} - \frac{12581378303}{2293577550} a^{2} - \frac{2619885139}{1911314625} a + \frac{208098308}{173755875} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31677601.476 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.11907.1 x3, 3.1.47628.2 x3, 3.1.972.1 x3, 3.1.588.1 x3, 6.0.425329947.3, 6.0.6805279152.4, 6.0.2834352.1, 6.0.1037232.1, 9.1.324121835451456.12 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |