Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 195 x^{14} - 189 x^{13} - 524 x^{12} + 3339 x^{11} - 8067 x^{10} + 10800 x^{9} - 13371 x^{8} + 23229 x^{7} + 48007 x^{6} - 214326 x^{5} + 311760 x^{4} - 243648 x^{3} + 86328 x^{2} - 3456 x + 48 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-315164892649262158461997559808=-\,2^{12}\cdot 3^{33}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{148} a^{12} - \frac{3}{74} a^{11} - \frac{5}{37} a^{10} + \frac{7}{148} a^{9} - \frac{1}{37} a^{8} + \frac{14}{37} a^{7} - \frac{29}{148} a^{6} - \frac{29}{74} a^{5} - \frac{8}{37} a^{4} - \frac{43}{148} a^{3} + \frac{3}{37} a^{2} - \frac{8}{37} a + \frac{12}{37}$, $\frac{1}{148} a^{13} + \frac{9}{74} a^{11} + \frac{35}{148} a^{10} - \frac{9}{37} a^{9} + \frac{8}{37} a^{8} + \frac{11}{148} a^{7} + \frac{16}{37} a^{6} - \frac{5}{74} a^{5} + \frac{61}{148} a^{4} - \frac{6}{37} a^{3} + \frac{10}{37} a^{2} + \frac{1}{37} a - \frac{2}{37}$, $\frac{1}{5624} a^{14} - \frac{7}{5624} a^{13} - \frac{1}{2812} a^{12} + \frac{103}{5624} a^{11} + \frac{1377}{5624} a^{10} + \frac{55}{703} a^{9} - \frac{1317}{5624} a^{8} - \frac{83}{296} a^{7} + \frac{11}{148} a^{6} - \frac{2631}{5624} a^{5} - \frac{329}{5624} a^{4} + \frac{263}{703} a^{3} + \frac{65}{703} a^{2} + \frac{225}{1406} a + \frac{35}{703}$, $\frac{1}{5624} a^{15} - \frac{13}{5624} a^{13} + \frac{13}{5624} a^{12} + \frac{213}{2812} a^{11} - \frac{1131}{5624} a^{10} - \frac{137}{5624} a^{9} - \frac{105}{703} a^{8} + \frac{127}{296} a^{7} - \frac{693}{5624} a^{6} - \frac{329}{2812} a^{5} + \frac{47}{152} a^{4} + \frac{183}{1406} a^{3} + \frac{292}{703} a^{2} - \frac{521}{1406} a - \frac{249}{703}$, $\frac{1}{2957364928376} a^{16} - \frac{1}{369670616047} a^{15} - \frac{94814931}{1478682464188} a^{14} + \frac{663704587}{1478682464188} a^{13} + \frac{599063073}{739341232094} a^{12} - \frac{15816916689}{1478682464188} a^{11} + \frac{40228831484}{369670616047} a^{10} + \frac{47785649265}{739341232094} a^{9} + \frac{6470012049}{1478682464188} a^{8} + \frac{18331661277}{39964390924} a^{7} + \frac{305671621307}{739341232094} a^{6} + \frac{684057748029}{1478682464188} a^{5} - \frac{1074182287501}{2957364928376} a^{4} + \frac{93219884925}{739341232094} a^{3} + \frac{252837576051}{739341232094} a^{2} + \frac{289880978329}{739341232094} a + \frac{48376374562}{369670616047}$, $\frac{1}{48888199630983656} a^{17} + \frac{8257}{48888199630983656} a^{16} - \frac{438185932227}{6111024953872957} a^{15} - \frac{677286403079}{24444099815491828} a^{14} + \frac{12315480618801}{6111024953872957} a^{13} + \frac{15690816450799}{6111024953872957} a^{12} - \frac{2970822740381505}{12222049907745914} a^{11} + \frac{5449844140826757}{24444099815491828} a^{10} + \frac{669713592364136}{6111024953872957} a^{9} - \frac{59313490197975}{400722947794948} a^{8} - \frac{1230326118037863}{6111024953872957} a^{7} + \frac{1838863177367565}{6111024953872957} a^{6} - \frac{5157652962630057}{48888199630983656} a^{5} - \frac{21405754701149135}{48888199630983656} a^{4} + \frac{732922642634126}{6111024953872957} a^{3} - \frac{1645862483048641}{6111024953872957} a^{2} - \frac{1400341745875785}{12222049907745914} a - \frac{117457495733209}{321632892309103}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1783257339}{915029565602} a^{17} - \frac{30315374763}{1830059131204} a^{16} + \frac{124744279827}{1830059131204} a^{15} - \frac{658549206885}{3660118262408} a^{14} + \frac{1111934552841}{3660118262408} a^{13} - \frac{114730470036}{457514782801} a^{12} - \frac{4000629742215}{3660118262408} a^{11} + \frac{21686415985245}{3660118262408} a^{10} - \frac{23811631487759}{1830059131204} a^{9} + \frac{944062593465}{60001938728} a^{8} - \frac{75125777665425}{3660118262408} a^{7} + \frac{17132052993615}{457514782801} a^{6} + \frac{397779529103811}{3660118262408} a^{5} - \frac{1304285392559151}{3660118262408} a^{4} + \frac{208838396977517}{457514782801} a^{3} - \frac{285300118420785}{915029565602} a^{2} + \frac{75004173107379}{915029565602} a - \frac{541870814143}{457514782801} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36111792.2397 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 3.1.47628.4 x3, 3.1.588.1 x3, 3.1.47628.1 x3, 6.0.177147.2, 6.0.6805279152.3, 6.0.1037232.1, 6.0.6805279152.1, 9.1.324121835451456.8 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |