Normalized defining polynomial
\( x^{18} + 8 x^{16} - 20 x^{15} + 44 x^{14} - 140 x^{13} + 201 x^{12} - 451 x^{11} + 736 x^{10} - 464 x^{9} + 519 x^{8} - 1219 x^{7} + 1657 x^{6} - 303 x^{5} - 925 x^{4} + 30 x^{3} + 246 x^{2} + 80 x + 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3135418647416996838649487=-\,17^{9}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{35} a^{13} + \frac{12}{35} a^{12} + \frac{4}{35} a^{11} + \frac{2}{35} a^{10} + \frac{3}{35} a^{9} - \frac{6}{35} a^{8} + \frac{3}{35} a^{7} - \frac{3}{35} a^{6} - \frac{13}{35} a^{5} + \frac{12}{35} a^{4} - \frac{12}{35} a^{3} - \frac{1}{7} a^{2} - \frac{3}{35} a - \frac{2}{7}$, $\frac{1}{35} a^{14} - \frac{11}{35} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{7} a^{8} - \frac{4}{35} a^{7} - \frac{12}{35} a^{6} - \frac{1}{5} a^{5} - \frac{16}{35} a^{4} - \frac{1}{35} a^{3} - \frac{13}{35} a^{2} - \frac{9}{35} a + \frac{3}{7}$, $\frac{1}{595} a^{15} + \frac{1}{595} a^{14} - \frac{2}{595} a^{13} - \frac{7}{17} a^{12} + \frac{2}{7} a^{11} + \frac{38}{595} a^{10} - \frac{113}{595} a^{9} + \frac{293}{595} a^{8} + \frac{13}{595} a^{7} - \frac{118}{595} a^{6} + \frac{73}{595} a^{5} + \frac{99}{595} a^{4} + \frac{2}{119} a^{3} + \frac{23}{595} a^{2} + \frac{117}{595} a + \frac{1}{17}$, $\frac{1}{1103725} a^{16} + \frac{764}{1103725} a^{15} + \frac{416}{44149} a^{14} + \frac{15654}{1103725} a^{13} + \frac{10104}{44149} a^{12} + \frac{352244}{1103725} a^{11} + \frac{355162}{1103725} a^{10} - \frac{274864}{1103725} a^{9} - \frac{295693}{1103725} a^{8} - \frac{1181}{31535} a^{7} + \frac{276406}{1103725} a^{6} - \frac{14201}{220745} a^{5} - \frac{224197}{1103725} a^{4} - \frac{281296}{1103725} a^{3} + \frac{539464}{1103725} a^{2} + \frac{40274}{220745} a + \frac{6855}{44149}$, $\frac{1}{77547465620046625} a^{17} + \frac{21536644627}{77547465620046625} a^{16} + \frac{23767810724362}{77547465620046625} a^{15} + \frac{17545340446629}{77547465620046625} a^{14} - \frac{463987741848248}{77547465620046625} a^{13} + \frac{21552355061781639}{77547465620046625} a^{12} + \frac{856873130173329}{77547465620046625} a^{11} + \frac{1449476896255757}{77547465620046625} a^{10} + \frac{1468084314304603}{3101898624801865} a^{9} + \frac{1388202506743698}{11078209374292375} a^{8} + \frac{21102597838515141}{77547465620046625} a^{7} - \frac{4201244862935537}{77547465620046625} a^{6} + \frac{32415742491849233}{77547465620046625} a^{5} - \frac{26284968307021012}{77547465620046625} a^{4} + \frac{21117363034785376}{77547465620046625} a^{3} - \frac{16408196477508093}{77547465620046625} a^{2} + \frac{398281929119831}{912323124941725} a - \frac{2092783743538}{8360912735315}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48092.8610332 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-527}) \), 3.1.527.1 x3, 6.0.146363183.2, 9.1.77133397441.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |