Normalized defining polynomial
\( x^{18} + 54 x^{16} + 1215 x^{14} + 14742 x^{12} + 104247 x^{10} - 1810 x^{9} + 433026 x^{8} - 48870 x^{7} + 1010394 x^{6} - 439830 x^{5} + 1180980 x^{4} - 1466100 x^{3} + 531441 x^{2} - 1319490 x + 3335149 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31329007244264248949886964450839=-\,3^{45}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(351=3^{3}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{351}(1,·)$, $\chi_{351}(194,·)$, $\chi_{351}(196,·)$, $\chi_{351}(77,·)$, $\chi_{351}(79,·)$, $\chi_{351}(272,·)$, $\chi_{351}(274,·)$, $\chi_{351}(155,·)$, $\chi_{351}(157,·)$, $\chi_{351}(350,·)$, $\chi_{351}(38,·)$, $\chi_{351}(40,·)$, $\chi_{351}(233,·)$, $\chi_{351}(235,·)$, $\chi_{351}(116,·)$, $\chi_{351}(118,·)$, $\chi_{351}(311,·)$, $\chi_{351}(313,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{508} a^{9} + \frac{27}{508} a^{7} + \frac{243}{508} a^{5} - \frac{103}{254} a^{3} + \frac{221}{508} a - \frac{143}{508}$, $\frac{1}{508} a^{10} + \frac{27}{508} a^{8} + \frac{243}{508} a^{6} - \frac{103}{254} a^{4} + \frac{221}{508} a^{2} - \frac{143}{508} a$, $\frac{1}{508} a^{11} + \frac{11}{254} a^{7} - \frac{163}{508} a^{5} + \frac{195}{508} a^{3} - \frac{143}{508} a^{2} + \frac{129}{508} a - \frac{203}{508}$, $\frac{1}{508} a^{12} + \frac{11}{254} a^{8} - \frac{163}{508} a^{6} + \frac{195}{508} a^{4} - \frac{143}{508} a^{3} + \frac{129}{508} a^{2} - \frac{203}{508} a$, $\frac{1}{508} a^{13} - \frac{249}{508} a^{7} - \frac{71}{508} a^{5} - \frac{143}{508} a^{4} + \frac{89}{508} a^{3} - \frac{203}{508} a^{2} + \frac{109}{254} a + \frac{49}{254}$, $\frac{1}{1674257764} a^{14} - \frac{264482}{418564441} a^{13} + \frac{21}{837128882} a^{12} + \frac{1585987}{1674257764} a^{11} + \frac{693}{1674257764} a^{10} + \frac{179831}{418564441} a^{9} + \frac{2835}{837128882} a^{8} - \frac{89033201}{837128882} a^{7} + \frac{11907}{837128882} a^{6} + \frac{52650173}{418564441} a^{5} + \frac{234048221}{1674257764} a^{4} + \frac{11411708}{418564441} a^{3} + \frac{7424442}{418564441} a^{2} - \frac{67616494}{418564441} a + \frac{669048323}{1674257764}$, $\frac{1}{1674257764} a^{15} + \frac{45}{1674257764} a^{13} - \frac{121999}{1674257764} a^{12} + \frac{405}{837128882} a^{11} - \frac{1096181}{1674257764} a^{10} + \frac{7425}{1674257764} a^{9} + \frac{29694627}{1674257764} a^{8} + \frac{18225}{837128882} a^{7} - \frac{9684629}{1674257764} a^{6} + \frac{45927}{837128882} a^{5} + \frac{379585195}{1674257764} a^{4} - \frac{115301375}{837128882} a^{3} + \frac{722362917}{1674257764} a^{2} + \frac{400454037}{837128882} a - \frac{293275817}{837128882}$, $\frac{1}{1674257764} a^{16} + \frac{1343799}{1674257764} a^{13} - \frac{270}{418564441} a^{12} + \frac{20815}{837128882} a^{11} - \frac{5940}{418564441} a^{10} + \frac{310415}{837128882} a^{9} - \frac{54675}{418564441} a^{8} - \frac{147200705}{418564441} a^{7} - \frac{244944}{418564441} a^{6} - \frac{24165643}{418564441} a^{5} - \frac{816099601}{1674257764} a^{4} - \frac{349601189}{1674257764} a^{3} + \frac{68424123}{837128882} a^{2} - \frac{112316581}{1674257764} a + \frac{204240131}{837128882}$, $\frac{1}{1674257764} a^{17} - \frac{306}{418564441} a^{13} - \frac{369617}{1674257764} a^{12} - \frac{7344}{418564441} a^{11} - \frac{1221071}{1674257764} a^{10} - \frac{75735}{418564441} a^{9} - \frac{149131975}{837128882} a^{8} - \frac{396576}{418564441} a^{7} + \frac{447965167}{1674257764} a^{6} - \frac{1041012}{418564441} a^{5} + \frac{330977197}{1674257764} a^{4} - \frac{172570444}{418564441} a^{3} - \frac{315419811}{1674257764} a^{2} - \frac{21812969}{418564441} a - \frac{76975889}{418564441}$
Class group and class number
$C_{2524}$, which has order $2524$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), \(\Q(\zeta_{9})^+\), 6.0.43243551.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||