Normalized defining polynomial
\( x^{18} - 2 x^{17} + 101 x^{16} - 202 x^{15} + 5245 x^{14} - 8562 x^{13} + 178994 x^{12} - 203038 x^{11} + 4318608 x^{10} - 2774640 x^{9} + 75342043 x^{8} - 16921424 x^{7} + 940014547 x^{6} + 68658878 x^{5} + 7988920261 x^{4} + 1747923682 x^{3} + 41322035770 x^{2} + 8074688936 x + 97158937289 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3123894467595344662196894875152879190016=-\,2^{33}\cdot 7^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{822} a^{16} - \frac{8}{411} a^{15} - \frac{14}{411} a^{14} - \frac{53}{822} a^{13} - \frac{7}{274} a^{12} + \frac{83}{411} a^{11} + \frac{46}{411} a^{10} - \frac{7}{274} a^{9} - \frac{5}{137} a^{8} - \frac{46}{411} a^{7} - \frac{163}{411} a^{6} - \frac{115}{411} a^{5} - \frac{337}{822} a^{4} + \frac{52}{411} a^{3} + \frac{19}{411} a^{2} + \frac{23}{822} a + \frac{191}{411}$, $\frac{1}{36425882306863751822295885167007242880001786184144761347822} a^{17} - \frac{2156808829541466996618700028805629699745226094382020201}{12141960768954583940765295055669080960000595394714920449274} a^{16} - \frac{2034073426305593055810833123903885843779291511389086485131}{36425882306863751822295885167007242880001786184144761347822} a^{15} + \frac{2835681531781215131482649198818868565315880797208516890779}{36425882306863751822295885167007242880001786184144761347822} a^{14} + \frac{2372723622990791984059173636728486242928173818105637357385}{36425882306863751822295885167007242880001786184144761347822} a^{13} + \frac{409364973294307090702823864648298045173306174538111195603}{12141960768954583940765295055669080960000595394714920449274} a^{12} - \frac{2271526135861227392202596087202416269919022000753291013383}{12141960768954583940765295055669080960000595394714920449274} a^{11} + \frac{7945623116599468806276266393578962145623537556555251311527}{36425882306863751822295885167007242880001786184144761347822} a^{10} + \frac{1824683320435926792010360639690091344737635080780621824683}{18212941153431875911147942583503621440000893092072380673911} a^{9} - \frac{2602312793833743148776547132376989143747260773534141732160}{6070980384477291970382647527834540480000297697357460224637} a^{8} - \frac{7022278530830240997841858439613393351145278590551546039549}{18212941153431875911147942583503621440000893092072380673911} a^{7} + \frac{6312824295280107893897648726298789660238187358975444535598}{18212941153431875911147942583503621440000893092072380673911} a^{6} + \frac{1484003424153308305774775458064054927924664697840149430453}{12141960768954583940765295055669080960000595394714920449274} a^{5} - \frac{1244426106370898728273369645370648348862953510245683350643}{12141960768954583940765295055669080960000595394714920449274} a^{4} + \frac{1357755938799239008207177247674174802213758756527275751765}{12141960768954583940765295055669080960000595394714920449274} a^{3} - \frac{4939653020845449378571029726549508840326315240221700461423}{12141960768954583940765295055669080960000595394714920449274} a^{2} - \frac{1729142332512028527932293492034807534810795182955029291988}{18212941153431875911147942583503621440000893092072380673911} a - \frac{34206986649182398915527935099327942099994946504620901715}{132941176302422451906189361923384098102196299942134165503}$
Class group and class number
$C_{2}\times C_{2}\times C_{753844}$, which has order $3015376$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 3.3.1369.1, 3.3.148.1, 6.0.329132658176.5, 6.0.961673216.5, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |