Normalized defining polynomial
\( x^{18} - 3 x^{17} + 33 x^{16} - 388 x^{15} + 3138 x^{14} + 13218 x^{13} + 53812 x^{12} + \cdots + 7107138128187 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-3121575272477039793063598549762509621195780096\) \(\medspace = -\,2^{12}\cdot 3^{33}\cdot 7^{12}\cdot 17^{13}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(336.87\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}3^{11/6}7^{2/3}17^{5/6}\approx 461.510683112854$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-51}) \) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6}a^{6}-\frac{1}{2}a^{5}+\frac{1}{6}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{2}a^{5}+\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{12}a^{8}-\frac{1}{6}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}$, $\frac{1}{12}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{6}a^{3}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{72}a^{10}-\frac{1}{72}a^{9}+\frac{1}{72}a^{8}-\frac{1}{36}a^{7}+\frac{5}{72}a^{6}+\frac{13}{72}a^{5}+\frac{1}{8}a^{4}+\frac{5}{12}a^{3}-\frac{1}{24}a^{2}+\frac{3}{8}a+\frac{1}{8}$, $\frac{1}{72}a^{11}-\frac{1}{72}a^{8}+\frac{1}{24}a^{7}-\frac{1}{12}a^{6}+\frac{11}{36}a^{5}-\frac{11}{24}a^{4}+\frac{1}{24}a^{3}+\frac{1}{3}a^{2}-\frac{1}{2}a+\frac{1}{8}$, $\frac{1}{34272}a^{12}-\frac{1}{408}a^{11}+\frac{13}{3808}a^{10}-\frac{83}{2448}a^{9}-\frac{3}{238}a^{8}-\frac{29}{408}a^{7}+\frac{2671}{34272}a^{6}-\frac{113}{408}a^{5}-\frac{109}{1428}a^{4}+\frac{95}{272}a^{3}-\frac{379}{3808}a^{2}+\frac{1}{8}a+\frac{1845}{3808}$, $\frac{1}{34272}a^{13}+\frac{67}{11424}a^{11}+\frac{7}{2448}a^{10}-\frac{13}{476}a^{9}-\frac{1}{204}a^{8}+\frac{2251}{34272}a^{7}-\frac{13}{204}a^{6}+\frac{9}{119}a^{5}-\frac{5}{48}a^{4}-\frac{3461}{11424}a^{3}+\frac{1}{68}a^{2}-\frac{59}{3808}a+\frac{5}{68}$, $\frac{1}{44005248}a^{14}+\frac{1}{95872}a^{13}-\frac{19}{3667104}a^{12}+\frac{206933}{44005248}a^{11}-\frac{65357}{14668416}a^{10}+\frac{264445}{7334208}a^{9}+\frac{232837}{6286464}a^{8}-\frac{825941}{14668416}a^{7}+\frac{15665}{287616}a^{6}+\frac{247341}{814912}a^{5}+\frac{2095531}{4889472}a^{4}-\frac{2156291}{4889472}a^{3}+\frac{34537}{611184}a^{2}+\frac{745685}{1629824}a-\frac{408539}{1629824}$, $\frac{1}{44005248}a^{15}-\frac{37}{4889472}a^{13}-\frac{61}{6286464}a^{12}+\frac{4603}{814912}a^{11}-\frac{1151}{698496}a^{10}-\frac{192617}{6286464}a^{9}+\frac{1171}{32742}a^{8}+\frac{2605}{47936}a^{7}-\frac{62069}{2095488}a^{6}+\frac{595075}{14668416}a^{5}-\frac{1611}{58208}a^{4}-\frac{126901}{1629824}a^{3}+\frac{314621}{698496}a^{2}+\frac{268479}{814912}a+\frac{88195}{232832}$, $\frac{1}{791038338048}a^{16}+\frac{359}{131839723008}a^{15}-\frac{359}{65919861504}a^{14}-\frac{4638407}{395519169024}a^{13}+\frac{17639}{10986643584}a^{12}-\frac{74869873}{21973287168}a^{11}-\frac{85132507}{14125684608}a^{10}+\frac{3945911}{308036736}a^{9}-\frac{333327979}{37668492288}a^{8}+\frac{4489841}{514998918}a^{7}+\frac{39488461}{1569520512}a^{6}-\frac{1602473231}{7324429056}a^{5}+\frac{9024731245}{21973287168}a^{4}-\frac{4536501575}{14648858112}a^{3}+\frac{1469301767}{3662214528}a^{2}-\frac{2229834549}{4882952704}a+\frac{3073324109}{9765905408}$, $\frac{1}{14\!\cdots\!64}a^{17}-\frac{31\!\cdots\!33}{71\!\cdots\!32}a^{16}-\frac{54\!\cdots\!25}{11\!\cdots\!72}a^{15}+\frac{74\!\cdots\!81}{71\!\cdots\!32}a^{14}-\frac{94\!\cdots\!23}{17\!\cdots\!08}a^{13}+\frac{12\!\cdots\!29}{11\!\cdots\!72}a^{12}+\frac{23\!\cdots\!93}{44\!\cdots\!52}a^{11}+\frac{12\!\cdots\!71}{44\!\cdots\!52}a^{10}-\frac{14\!\cdots\!13}{47\!\cdots\!88}a^{9}+\frac{33\!\cdots\!07}{11\!\cdots\!72}a^{8}+\frac{16\!\cdots\!09}{29\!\cdots\!68}a^{7}-\frac{49\!\cdots\!13}{13\!\cdots\!08}a^{6}+\frac{12\!\cdots\!01}{23\!\cdots\!72}a^{5}+\frac{36\!\cdots\!09}{11\!\cdots\!64}a^{4}+\frac{26\!\cdots\!21}{66\!\cdots\!04}a^{3}+\frac{47\!\cdots\!57}{26\!\cdots\!16}a^{2}+\frac{33\!\cdots\!05}{17\!\cdots\!44}a-\frac{35\!\cdots\!35}{44\!\cdots\!36}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{3}\times C_{3}\times C_{6}$, which has order $54$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{13\!\cdots\!35}{10\!\cdots\!76}a^{17}+\frac{17\!\cdots\!95}{22\!\cdots\!28}a^{16}-\frac{36\!\cdots\!85}{11\!\cdots\!64}a^{15}+\frac{13\!\cdots\!19}{25\!\cdots\!44}a^{14}+\frac{23\!\cdots\!85}{33\!\cdots\!92}a^{13}+\frac{55\!\cdots\!13}{84\!\cdots\!48}a^{12}+\frac{75\!\cdots\!79}{50\!\cdots\!88}a^{11}-\frac{19\!\cdots\!15}{84\!\cdots\!48}a^{10}-\frac{15\!\cdots\!67}{33\!\cdots\!92}a^{9}+\frac{10\!\cdots\!81}{67\!\cdots\!84}a^{8}+\frac{97\!\cdots\!51}{55\!\cdots\!16}a^{7}-\frac{48\!\cdots\!53}{14\!\cdots\!08}a^{6}-\frac{70\!\cdots\!63}{56\!\cdots\!32}a^{5}+\frac{17\!\cdots\!75}{13\!\cdots\!96}a^{4}+\frac{56\!\cdots\!43}{37\!\cdots\!88}a^{3}+\frac{55\!\cdots\!93}{62\!\cdots\!48}a^{2}+\frac{73\!\cdots\!33}{31\!\cdots\!24}a+\frac{92\!\cdots\!03}{25\!\cdots\!92}$, $\frac{13\!\cdots\!87}{16\!\cdots\!92}a^{17}-\frac{15\!\cdots\!31}{66\!\cdots\!68}a^{16}+\frac{20\!\cdots\!91}{11\!\cdots\!28}a^{15}-\frac{10\!\cdots\!93}{41\!\cdots\!48}a^{14}+\frac{69\!\cdots\!51}{33\!\cdots\!84}a^{13}+\frac{21\!\cdots\!35}{13\!\cdots\!16}a^{12}+\frac{44\!\cdots\!07}{82\!\cdots\!96}a^{11}-\frac{19\!\cdots\!81}{16\!\cdots\!92}a^{10}+\frac{22\!\cdots\!83}{55\!\cdots\!64}a^{9}+\frac{13\!\cdots\!43}{24\!\cdots\!84}a^{8}+\frac{62\!\cdots\!37}{55\!\cdots\!64}a^{7}+\frac{39\!\cdots\!87}{18\!\cdots\!88}a^{6}-\frac{28\!\cdots\!95}{61\!\cdots\!96}a^{5}+\frac{22\!\cdots\!75}{32\!\cdots\!48}a^{4}+\frac{27\!\cdots\!51}{12\!\cdots\!92}a^{3}+\frac{87\!\cdots\!89}{30\!\cdots\!48}a^{2}+\frac{14\!\cdots\!81}{12\!\cdots\!92}a+\frac{84\!\cdots\!85}{35\!\cdots\!12}$, $\frac{29\!\cdots\!97}{74\!\cdots\!92}a^{17}-\frac{52\!\cdots\!35}{29\!\cdots\!68}a^{16}+\frac{14\!\cdots\!59}{99\!\cdots\!56}a^{15}-\frac{96\!\cdots\!47}{59\!\cdots\!36}a^{14}+\frac{82\!\cdots\!93}{59\!\cdots\!36}a^{13}+\frac{40\!\cdots\!81}{99\!\cdots\!56}a^{12}+\frac{52\!\cdots\!23}{84\!\cdots\!48}a^{11}-\frac{33\!\cdots\!69}{59\!\cdots\!36}a^{10}+\frac{20\!\cdots\!09}{70\!\cdots\!04}a^{9}-\frac{10\!\cdots\!33}{19\!\cdots\!12}a^{8}+\frac{83\!\cdots\!71}{94\!\cdots\!72}a^{7}-\frac{42\!\cdots\!91}{19\!\cdots\!12}a^{6}-\frac{20\!\cdots\!73}{16\!\cdots\!76}a^{5}+\frac{80\!\cdots\!65}{22\!\cdots\!68}a^{4}+\frac{45\!\cdots\!83}{66\!\cdots\!04}a^{3}+\frac{18\!\cdots\!65}{11\!\cdots\!84}a^{2}+\frac{73\!\cdots\!13}{22\!\cdots\!68}a+\frac{37\!\cdots\!79}{31\!\cdots\!24}$, $\frac{32\!\cdots\!81}{17\!\cdots\!08}a^{17}+\frac{77\!\cdots\!11}{71\!\cdots\!32}a^{16}-\frac{10\!\cdots\!59}{11\!\cdots\!72}a^{15}-\frac{70\!\cdots\!51}{22\!\cdots\!76}a^{14}-\frac{15\!\cdots\!47}{35\!\cdots\!16}a^{13}+\frac{11\!\cdots\!17}{14\!\cdots\!84}a^{12}+\frac{41\!\cdots\!25}{12\!\cdots\!72}a^{11}-\frac{48\!\cdots\!91}{17\!\cdots\!08}a^{10}-\frac{15\!\cdots\!05}{84\!\cdots\!48}a^{9}+\frac{79\!\cdots\!23}{79\!\cdots\!48}a^{8}+\frac{49\!\cdots\!61}{84\!\cdots\!48}a^{7}+\frac{26\!\cdots\!37}{12\!\cdots\!04}a^{6}-\frac{40\!\cdots\!87}{22\!\cdots\!68}a^{5}-\frac{21\!\cdots\!43}{29\!\cdots\!84}a^{4}+\frac{16\!\cdots\!17}{77\!\cdots\!24}a^{3}+\frac{76\!\cdots\!75}{33\!\cdots\!52}a^{2}+\frac{17\!\cdots\!13}{25\!\cdots\!08}a+\frac{11\!\cdots\!69}{12\!\cdots\!96}$, $\frac{19\!\cdots\!21}{17\!\cdots\!08}a^{17}+\frac{20\!\cdots\!19}{71\!\cdots\!32}a^{16}-\frac{18\!\cdots\!57}{44\!\cdots\!36}a^{15}+\frac{21\!\cdots\!47}{44\!\cdots\!52}a^{14}-\frac{24\!\cdots\!43}{35\!\cdots\!16}a^{13}+\frac{48\!\cdots\!63}{49\!\cdots\!28}a^{12}-\frac{58\!\cdots\!53}{12\!\cdots\!72}a^{11}+\frac{19\!\cdots\!73}{17\!\cdots\!08}a^{10}-\frac{22\!\cdots\!91}{28\!\cdots\!16}a^{9}+\frac{13\!\cdots\!39}{79\!\cdots\!48}a^{8}+\frac{15\!\cdots\!05}{84\!\cdots\!48}a^{7}-\frac{49\!\cdots\!23}{12\!\cdots\!04}a^{6}+\frac{48\!\cdots\!59}{66\!\cdots\!04}a^{5}-\frac{11\!\cdots\!07}{12\!\cdots\!32}a^{4}-\frac{49\!\cdots\!85}{44\!\cdots\!36}a^{3}+\frac{35\!\cdots\!67}{33\!\cdots\!52}a^{2}+\frac{13\!\cdots\!53}{44\!\cdots\!36}a+\frac{15\!\cdots\!81}{12\!\cdots\!96}$, $\frac{20\!\cdots\!03}{59\!\cdots\!36}a^{17}+\frac{27\!\cdots\!23}{88\!\cdots\!72}a^{16}+\frac{51\!\cdots\!51}{44\!\cdots\!36}a^{15}-\frac{17\!\cdots\!41}{29\!\cdots\!68}a^{14}+\frac{13\!\cdots\!21}{44\!\cdots\!36}a^{13}+\frac{18\!\cdots\!25}{15\!\cdots\!29}a^{12}+\frac{14\!\cdots\!05}{10\!\cdots\!56}a^{11}-\frac{96\!\cdots\!25}{19\!\cdots\!12}a^{10}-\frac{74\!\cdots\!27}{28\!\cdots\!16}a^{9}+\frac{35\!\cdots\!65}{26\!\cdots\!16}a^{8}+\frac{78\!\cdots\!33}{28\!\cdots\!16}a^{7}+\frac{21\!\cdots\!17}{66\!\cdots\!04}a^{6}-\frac{67\!\cdots\!15}{22\!\cdots\!68}a^{5}-\frac{23\!\cdots\!49}{33\!\cdots\!52}a^{4}+\frac{11\!\cdots\!95}{44\!\cdots\!36}a^{3}+\frac{16\!\cdots\!91}{11\!\cdots\!84}a^{2}+\frac{38\!\cdots\!45}{44\!\cdots\!36}a+\frac{31\!\cdots\!25}{12\!\cdots\!96}$, $\frac{94\!\cdots\!03}{71\!\cdots\!32}a^{17}+\frac{29\!\cdots\!81}{20\!\cdots\!52}a^{16}+\frac{50\!\cdots\!07}{33\!\cdots\!92}a^{15}+\frac{19\!\cdots\!89}{25\!\cdots\!44}a^{14}+\frac{43\!\cdots\!79}{71\!\cdots\!32}a^{13}+\frac{42\!\cdots\!23}{59\!\cdots\!36}a^{12}+\frac{25\!\cdots\!67}{35\!\cdots\!16}a^{11}+\frac{66\!\cdots\!95}{17\!\cdots\!08}a^{10}+\frac{43\!\cdots\!33}{23\!\cdots\!44}a^{9}+\frac{45\!\cdots\!37}{52\!\cdots\!32}a^{8}+\frac{38\!\cdots\!29}{59\!\cdots\!36}a^{7}+\frac{45\!\cdots\!15}{99\!\cdots\!56}a^{6}+\frac{13\!\cdots\!87}{56\!\cdots\!32}a^{5}+\frac{19\!\cdots\!11}{19\!\cdots\!12}a^{4}+\frac{27\!\cdots\!57}{88\!\cdots\!72}a^{3}+\frac{94\!\cdots\!03}{13\!\cdots\!08}a^{2}+\frac{11\!\cdots\!87}{11\!\cdots\!84}a+\frac{14\!\cdots\!23}{17\!\cdots\!44}$, $\frac{15\!\cdots\!93}{14\!\cdots\!84}a^{17}+\frac{49\!\cdots\!63}{12\!\cdots\!72}a^{16}-\frac{36\!\cdots\!03}{10\!\cdots\!56}a^{15}-\frac{10\!\cdots\!37}{14\!\cdots\!08}a^{14}+\frac{24\!\cdots\!57}{52\!\cdots\!12}a^{13}+\frac{34\!\cdots\!35}{74\!\cdots\!92}a^{12}+\frac{12\!\cdots\!77}{29\!\cdots\!68}a^{11}-\frac{20\!\cdots\!43}{89\!\cdots\!04}a^{10}-\frac{19\!\cdots\!35}{55\!\cdots\!92}a^{9}+\frac{96\!\cdots\!67}{82\!\cdots\!88}a^{8}-\frac{20\!\cdots\!39}{29\!\cdots\!68}a^{7}-\frac{22\!\cdots\!21}{33\!\cdots\!52}a^{6}-\frac{11\!\cdots\!53}{35\!\cdots\!52}a^{5}-\frac{81\!\cdots\!61}{99\!\cdots\!56}a^{4}+\frac{26\!\cdots\!13}{33\!\cdots\!52}a^{3}+\frac{24\!\cdots\!91}{41\!\cdots\!44}a^{2}+\frac{18\!\cdots\!73}{11\!\cdots\!84}a+\frac{19\!\cdots\!39}{68\!\cdots\!24}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 142607524896722.38 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 142607524896722.38 \cdot 54}{2\cdot\sqrt{3121575272477039793063598549762509621195780096}}\cr\approx \mathstrut & 1.05181198660491 \end{aligned}\] (assuming GRH)
Galois group
$C_3^2:D_6$ (as 18T52):
A solvable group of order 108 |
The 20 conjugacy class representatives for $C_3^2:D_6$ |
Character table for $C_3^2:D_6$ |
Intermediate fields
\(\Q(\sqrt{-51}) \), 3.1.972.2, 6.0.13925171376.8, 9.3.9023659939580352192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 18.6.318286244526390688310901391528421762902272.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(3\) | 3.6.11.3 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
3.6.11.3 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
3.6.11.3 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
\(7\) | 7.6.4.1 | $x^{6} + 14 x^{3} - 245$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
7.6.4.2 | $x^{6} - 42 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
7.6.4.3 | $x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.6.3.2 | $x^{6} + 289 x^{2} - 68782$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
17.12.10.2 | $x^{12} - 3060 x^{6} - 197676$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ |