Normalized defining polynomial
\( x^{18} + 180 x^{16} + 15183 x^{14} + 783204 x^{12} + 27134019 x^{10} - 2 x^{9} + 653310108 x^{8} + 1602 x^{7} + 10917716106 x^{6} - 130338 x^{5} + 122042249064 x^{4} + 2105724 x^{3} + 828116450649 x^{2} - 5692914 x + 2600743873751 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-311658701595221813593917258627482124288=-\,2^{27}\cdot 3^{44}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2376=2^{3}\cdot 3^{3}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2376}(1,·)$, $\chi_{2376}(901,·)$, $\chi_{2376}(2113,·)$, $\chi_{2376}(265,·)$, $\chi_{2376}(1165,·)$, $\chi_{2376}(2221,·)$, $\chi_{2376}(529,·)$, $\chi_{2376}(1429,·)$, $\chi_{2376}(793,·)$, $\chi_{2376}(1693,·)$, $\chi_{2376}(1057,·)$, $\chi_{2376}(1957,·)$, $\chi_{2376}(1321,·)$, $\chi_{2376}(109,·)$, $\chi_{2376}(1585,·)$, $\chi_{2376}(373,·)$, $\chi_{2376}(1849,·)$, $\chi_{2376}(637,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{17} + \frac{2670248631723261133709773280547542060427556889216004469932612065995949}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{16} - \frac{183370896623985727340143969387268470614436464361367248042418941427832}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{15} + \frac{19993516628032298103089621223176315542430884981850893660187426935172898}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{14} - \frac{12575761256199997523440412684856630092539118659375325875663474952463237}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{13} - \frac{24905901458452459670975420511315444114982464086319567241361194340263171}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{12} - \frac{27693180730431124584917778368155083426396333669309949887495726540267545}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{11} + \frac{3990792282972868788832006940025628457958835995246386638710292012475727}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{10} - \frac{15425767343928265853510047463843374381388310727807099038892521083297170}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{9} + \frac{3144838424393364695365444761359984043441636798799689976163666061154890}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{8} + \frac{11149133079656007497955764476577187672448330423100623532136539110684540}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{7} + \frac{25057244074472836425437225773661512107933338600686914253518755645593551}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{6} - \frac{24267370251784610749287259880205417978045078977425192482520126975767117}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{5} - \frac{9222588936321344788932235604916858712532280441233442125152198712567589}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{4} - \frac{24040484904130898106553118394502238362062084088441055412364573861656831}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{3} - \frac{11697658079481203494390487442576845682404358247991858590625537634861189}{57957434414862235744505032793950471434587912022430723902564898407813193} a^{2} + \frac{14312743701465294289543345716227708710216712208283714437514415740627956}{57957434414862235744505032793950471434587912022430723902564898407813193} a + \frac{22704029158892252616909661740401552739124264112282401563284627103556427}{57957434414862235744505032793950471434587912022430723902564898407813193}$
Class group and class number
$C_{8732666}$, which has order $8732666$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-22}) \), \(\Q(\zeta_{9})^+\), 6.0.4471137792.13, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||