Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 48 x^{15} + 150 x^{14} - 336 x^{13} + 485 x^{12} - 438 x^{11} + 14 x^{10} + 180 x^{9} + 2597 x^{8} - 7578 x^{7} + 6185 x^{6} + 1746 x^{5} + 60 x^{4} - 11598 x^{3} + 14984 x^{2} - 7584 x + 1408 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31148751066736023000000000000=-\,2^{12}\cdot 3^{8}\cdot 5^{12}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{3} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{4} a^{8} + \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{10} - \frac{1}{6} a^{8} - \frac{5}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3}$, $\frac{1}{204} a^{15} - \frac{5}{204} a^{14} - \frac{1}{34} a^{13} + \frac{1}{34} a^{12} + \frac{23}{204} a^{11} + \frac{7}{102} a^{10} + \frac{7}{204} a^{9} - \frac{49}{102} a^{8} - \frac{43}{102} a^{7} - \frac{35}{204} a^{6} + \frac{29}{204} a^{5} - \frac{55}{204} a^{4} + \frac{8}{17} a^{3} - \frac{13}{34} a^{2} - \frac{31}{102} a - \frac{20}{51}$, $\frac{1}{2448} a^{16} - \frac{1}{408} a^{15} - \frac{35}{2448} a^{14} + \frac{1}{204} a^{13} - \frac{1}{72} a^{12} - \frac{5}{204} a^{11} + \frac{43}{816} a^{10} - \frac{3}{136} a^{9} + \frac{193}{1224} a^{8} - \frac{1}{2} a^{7} + \frac{95}{816} a^{6} + \frac{1}{136} a^{5} - \frac{19}{2448} a^{4} - \frac{55}{136} a^{3} - \frac{47}{612} a^{2} + \frac{167}{408} a - \frac{109}{306}$, $\frac{1}{7003593185808140067456} a^{17} + \frac{149245888230187561}{1167265530968023344576} a^{16} + \frac{8898762477955793}{30058339853253820032} a^{15} - \frac{6576557705968043973}{194544255161337224096} a^{14} + \frac{42686451786987106147}{3501796592904070033728} a^{13} + \frac{11092105905335662073}{291816382742005836144} a^{12} - \frac{5439783941887512755}{45775118861491111552} a^{11} + \frac{67297944080471109113}{1167265530968023344576} a^{10} - \frac{763682901196573544597}{3501796592904070033728} a^{9} + \frac{51585498542015631135}{194544255161337224096} a^{8} + \frac{61440938172044435085}{778177020645348896384} a^{7} - \frac{204519568525574379725}{1167265530968023344576} a^{6} - \frac{41632751718149292607}{7003593185808140067456} a^{5} + \frac{296155635020613706733}{1167265530968023344576} a^{4} - \frac{232346240369880762719}{1750898296452035016864} a^{3} + \frac{420281826681310661243}{1167265530968023344576} a^{2} + \frac{7294997140661869814}{54715571764126094277} a + \frac{4234440041846084811}{24318031895167153012}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6910271.661602281 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.14700.1, 3.1.3675.1, 3.1.300.1, 3.1.588.1, 6.0.94539375.1, 6.0.1512630000.1, 6.0.30870000.1, 6.0.2420208.1, 9.1.9529569000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 7 | Data not computed | ||||||