Normalized defining polynomial
\( x^{18} + 7 x^{16} - 16 x^{15} + x^{14} - 26 x^{13} + 190 x^{12} + 380 x^{11} - 830 x^{10} + 1718 x^{9} + 1275 x^{8} - 2184 x^{7} + 4177 x^{6} - 1646 x^{5} + 3469 x^{4} - 3742 x^{3} + 5018 x^{2} - 364 x + 1421 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3088844736629670323038191616=-\,2^{18}\cdot 101^{7}\cdot 479^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{2}{11} a^{14} - \frac{2}{11} a^{13} + \frac{1}{11} a^{12} - \frac{4}{11} a^{11} - \frac{5}{11} a^{10} - \frac{3}{11} a^{9} - \frac{3}{11} a^{8} - \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{4}{11} a^{3} - \frac{4}{11} a^{2} + \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{5}{11} a^{14} - \frac{3}{11} a^{13} - \frac{2}{11} a^{12} - \frac{2}{11} a^{11} - \frac{2}{11} a^{10} + \frac{2}{11} a^{9} + \frac{3}{11} a^{7} + \frac{4}{11} a^{6} + \frac{4}{11} a^{4} + \frac{4}{11} a^{3} - \frac{4}{11} a^{2} - \frac{2}{11} a + \frac{2}{11}$, $\frac{1}{2878225261289374439927341650877498337} a^{17} - \frac{8489224068471387538761675950406003}{411175037327053491418191664411071191} a^{16} - \frac{1157435719950608583053483032725263}{37379548847913953765290151310097381} a^{15} + \frac{185553111811826667349964034358626148}{2878225261289374439927341650877498337} a^{14} + \frac{769829128185510890242239507602593908}{2878225261289374439927341650877498337} a^{13} + \frac{56210957309276661850713682036037079}{261656841935397676357031059170681667} a^{12} - \frac{1349485749265298299839626520812282821}{2878225261289374439927341650877498337} a^{11} - \frac{578587015320316322044518465836494384}{2878225261289374439927341650877498337} a^{10} + \frac{1425730218592660968404999957279906130}{2878225261289374439927341650877498337} a^{9} - \frac{1026600911147878997758325117714658876}{2878225261289374439927341650877498337} a^{8} - \frac{1281837177125479868929993480061795507}{2878225261289374439927341650877498337} a^{7} + \frac{174368663675976935629608312615266089}{411175037327053491418191664411071191} a^{6} + \frac{577401052998893718052199892731492861}{2878225261289374439927341650877498337} a^{5} + \frac{1290038838257736218128758125414983755}{2878225261289374439927341650877498337} a^{4} - \frac{381927685367040400448488771921668621}{2878225261289374439927341650877498337} a^{3} + \frac{961627049497672464149219460694016740}{2878225261289374439927341650877498337} a^{2} + \frac{5163062737877525599605762670312116}{23786985630490697850639187197334697} a + \frac{170194595083255898475478218667215557}{411175037327053491418191664411071191}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 931642.196453 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n880 are not computed |
| Character table for t18n880 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||