Normalized defining polynomial
\( x^{18} - 9 x^{17} + 96 x^{16} - 518 x^{15} + 3228 x^{14} - 10782 x^{13} + 42574 x^{12} - 97176 x^{11} + 161823 x^{10} - 297157 x^{9} - 55194 x^{8} + 410082 x^{7} + 2610916 x^{6} - 4401372 x^{5} + 87864060 x^{4} - 169850772 x^{3} + 539250456 x^{2} - 713931504 x + 599486056 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-308154864637927691969232913151717376=-\,2^{12}\cdot 3^{21}\cdot 7^{14}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{7}$, $\frac{1}{52} a^{16} - \frac{1}{52} a^{15} - \frac{3}{26} a^{14} - \frac{1}{13} a^{13} + \frac{3}{52} a^{12} - \frac{2}{13} a^{11} - \frac{9}{52} a^{10} - \frac{5}{26} a^{9} - \frac{1}{26} a^{8} + \frac{11}{52} a^{7} + \frac{7}{52} a^{6} - \frac{3}{26} a^{5} + \frac{9}{26} a^{4} + \frac{9}{26} a^{3} - \frac{4}{13} a^{2}$, $\frac{1}{20422596281701333819309725059530919519708843880960781548110232728220052} a^{17} - \frac{26804147324973632669381807474732720290243499063934147482163960438213}{20422596281701333819309725059530919519708843880960781548110232728220052} a^{16} - \frac{931876751034575480680338975921114486100624106990333511721102343327103}{20422596281701333819309725059530919519708843880960781548110232728220052} a^{15} - \frac{616756847293450974997662032690872595903397259262791111503230937051997}{5105649070425333454827431264882729879927210970240195387027558182055013} a^{14} - \frac{303489628730383009789370212420681990778670346089287007419944502392647}{5105649070425333454827431264882729879927210970240195387027558182055013} a^{13} + \frac{868610201345746417024633222196858342357402100136667734851594839154695}{10211298140850666909654862529765459759854421940480390774055116364110026} a^{12} + \frac{182613835005335201544759570244212743548430498246601215116082237928859}{5105649070425333454827431264882729879927210970240195387027558182055013} a^{11} + \frac{24571499759603797779353401410588431724666418198269455493070675552379}{176056864497425291545773491892507926894041757594489496104398558001897} a^{10} - \frac{405593860027457441481658915069087259588325419376854635248178017315243}{20422596281701333819309725059530919519708843880960781548110232728220052} a^{9} - \frac{1008041120680122177084804634427480542133384037824716607098204428924205}{20422596281701333819309725059530919519708843880960781548110232728220052} a^{8} + \frac{3415054663476180761327625466409596945897941781659126103637546849100593}{20422596281701333819309725059530919519708843880960781548110232728220052} a^{7} - \frac{1122537738132523952802751268529800709991249442405014338359715437928196}{5105649070425333454827431264882729879927210970240195387027558182055013} a^{6} + \frac{25276088576623318811813445555159025645176453906063665207580040987139}{352113728994850583091546983785015853788083515188978992208797116003794} a^{5} + \frac{948758512888714722846902385530043668443971158661615862447491011005999}{5105649070425333454827431264882729879927210970240195387027558182055013} a^{4} + \frac{136298094021705282044103369112811110314269251373393278352428521775459}{785484472373128223819604809981958443065724764652337751850393566470002} a^{3} + \frac{2111955198236513375072621550942826151957042861785424684523183191959236}{5105649070425333454827431264882729879927210970240195387027558182055013} a^{2} + \frac{162630834258721109476193414068599564591859481229747439011405356054270}{392742236186564111909802404990979221532862382326168875925196783235001} a - \frac{80908594656692457210965018875495269481813063885742304894747859181635}{392742236186564111909802404990979221532862382326168875925196783235001}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{468}$, which has order $59904$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), \(\Q(\zeta_{7})^+\), 3.3.756.1, 6.0.142424919.1, 6.0.3766993776.2, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |