Normalized defining polynomial
\( x^{18} + 135 x^{16} + 8703 x^{14} + 348039 x^{12} + 9461124 x^{10} - 2 x^{9} + 180682038 x^{8} + 1242 x^{7} + 2419311081 x^{6} - 79308 x^{5} + 21883306869 x^{4} + 1016694 x^{3} + 121352263884 x^{2} - 2203524 x + 314709501201 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-30613671805187353870953069542862225408=-\,2^{18}\cdot 3^{44}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1836=2^{2}\cdot 3^{3}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1836}(1,·)$, $\chi_{1836}(67,·)$, $\chi_{1836}(1225,·)$, $\chi_{1836}(1291,·)$, $\chi_{1836}(205,·)$, $\chi_{1836}(271,·)$, $\chi_{1836}(1429,·)$, $\chi_{1836}(1495,·)$, $\chi_{1836}(409,·)$, $\chi_{1836}(475,·)$, $\chi_{1836}(1633,·)$, $\chi_{1836}(1699,·)$, $\chi_{1836}(613,·)$, $\chi_{1836}(679,·)$, $\chi_{1836}(817,·)$, $\chi_{1836}(883,·)$, $\chi_{1836}(1021,·)$, $\chi_{1836}(1087,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{163} a^{16} - \frac{48}{163} a^{15} - \frac{37}{163} a^{14} + \frac{4}{163} a^{13} + \frac{41}{163} a^{12} + \frac{27}{163} a^{11} + \frac{75}{163} a^{10} - \frac{36}{163} a^{9} + \frac{7}{163} a^{8} - \frac{37}{163} a^{7} + \frac{53}{163} a^{6} + \frac{8}{163} a^{5} - \frac{27}{163} a^{4} - \frac{20}{163} a^{3} + \frac{65}{163} a^{2} + \frac{8}{163} a - \frac{41}{163}$, $\frac{1}{53813324793526559704903811995580172193494334294813054508054068891} a^{17} + \frac{122315051647049117577649977104239002947953197088927122067285993}{53813324793526559704903811995580172193494334294813054508054068891} a^{16} - \frac{3524402545697280842208846104362033804520077705792229293020371074}{53813324793526559704903811995580172193494334294813054508054068891} a^{15} + \frac{2515087856515085641920383510010942254655569366680916887420991438}{53813324793526559704903811995580172193494334294813054508054068891} a^{14} - \frac{14664037179693672920881108917064761414722045327270130365062182570}{53813324793526559704903811995580172193494334294813054508054068891} a^{13} - \frac{4725660360811427255285698854629885405678651728169833216711524156}{53813324793526559704903811995580172193494334294813054508054068891} a^{12} + \frac{5357802614755405680665133926283374441698989179501932760094153357}{53813324793526559704903811995580172193494334294813054508054068891} a^{11} + \frac{20901184434208640126823714937555184123827027368443991814162640156}{53813324793526559704903811995580172193494334294813054508054068891} a^{10} + \frac{15776369635371244821524672662036454401202714589421589263330408967}{53813324793526559704903811995580172193494334294813054508054068891} a^{9} + \frac{19249433311381232909883960493203648466417538101205837765275565320}{53813324793526559704903811995580172193494334294813054508054068891} a^{8} - \frac{2943106500847653370585248077581448133633794506637062010721617883}{53813324793526559704903811995580172193494334294813054508054068891} a^{7} + \frac{25710128908201146239141035620088044274798739346776580991390692065}{53813324793526559704903811995580172193494334294813054508054068891} a^{6} - \frac{6177593783538000375860646738214288674614497138503616615313829115}{53813324793526559704903811995580172193494334294813054508054068891} a^{5} - \frac{539009742889182096414184394956730366973897380125179171884271888}{53813324793526559704903811995580172193494334294813054508054068891} a^{4} - \frac{26144679139286829152667402505640331199733646567718265317682653787}{53813324793526559704903811995580172193494334294813054508054068891} a^{3} + \frac{4262324472833281726955717310816336575067624141687661618530607616}{53813324793526559704903811995580172193494334294813054508054068891} a^{2} + \frac{7734968822587642584140950701586170930166479126030407039653498800}{53813324793526559704903811995580172193494334294813054508054068891} a - \frac{243736057260085400737373012835583944673951632869045688607747016}{1015345750821255843488751169727927777235742156505906688831208847}$
Class group and class number
$C_{2}\times C_{2}\times C_{1949868}$, which has order $7799472$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), \(\Q(\zeta_{9})^+\), 6.0.2062988352.6, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |