Normalized defining polynomial
\( x^{18} + 4 x^{16} - 8 x^{15} + 5 x^{14} - 74 x^{13} + 23 x^{12} - 184 x^{11} + 395 x^{10} - 206 x^{9} + 1318 x^{8} - 518 x^{7} + 1856 x^{6} - 1632 x^{5} + 1643 x^{4} - 1516 x^{3} + 1185 x^{2} - 634 x + 191 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-30582621154749211119190016=-\,2^{18}\cdot 101^{6}\cdot 479^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43} a^{15} + \frac{18}{43} a^{14} + \frac{5}{43} a^{13} - \frac{8}{43} a^{12} + \frac{13}{43} a^{11} + \frac{17}{43} a^{10} + \frac{3}{43} a^{9} - \frac{9}{43} a^{8} - \frac{6}{43} a^{7} - \frac{15}{43} a^{6} + \frac{17}{43} a^{5} + \frac{2}{43} a^{4} - \frac{19}{43} a^{3} + \frac{2}{43} a^{2} - \frac{21}{43}$, $\frac{1}{43} a^{16} - \frac{18}{43} a^{14} - \frac{12}{43} a^{13} - \frac{15}{43} a^{12} - \frac{2}{43} a^{11} - \frac{2}{43} a^{10} - \frac{20}{43} a^{9} - \frac{16}{43} a^{8} + \frac{7}{43} a^{7} - \frac{14}{43} a^{6} - \frac{3}{43} a^{5} - \frac{12}{43} a^{4} + \frac{7}{43} a^{2} - \frac{21}{43} a - \frac{9}{43}$, $\frac{1}{283078606376868516450529} a^{17} - \frac{3284047970620549483009}{283078606376868516450529} a^{16} + \frac{1425719030817795346869}{283078606376868516450529} a^{15} - \frac{52117562646642021983065}{283078606376868516450529} a^{14} - \frac{77005430057452016929768}{283078606376868516450529} a^{13} + \frac{53578693232943981250246}{283078606376868516450529} a^{12} - \frac{62111546428295888606186}{283078606376868516450529} a^{11} + \frac{6692529896975901830896}{283078606376868516450529} a^{10} - \frac{103285476377891639043983}{283078606376868516450529} a^{9} + \frac{128211971437708117945809}{283078606376868516450529} a^{8} - \frac{84846790809679570827300}{283078606376868516450529} a^{7} - \frac{100422481683016498998424}{283078606376868516450529} a^{6} + \frac{68291152925245326833077}{283078606376868516450529} a^{5} - \frac{10709974895399952209718}{283078606376868516450529} a^{4} - \frac{64169345113216748661161}{283078606376868516450529} a^{3} + \frac{119279160691745517746186}{283078606376868516450529} a^{2} + \frac{105010061772175775784461}{283078606376868516450529} a - \frac{67636095539327204708897}{283078606376868516450529}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37509.4937277 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 49 conjugacy class representatives for t18n486 |
| Character table for t18n486 is not computed |
Intermediate fields
| 3.3.404.1, 6.0.312721856.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 479 | Data not computed | ||||||