Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} + 26 x^{15} - 51 x^{14} + 84 x^{13} + 257 x^{12} - 234 x^{11} + 312 x^{10} + 848 x^{9} - 156 x^{8} + 468 x^{7} + 716 x^{6} + 336 x^{5} + 264 x^{4} - 208 x^{3} + 144 x^{2} - 48 x + 16 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-305058304629265391270339328=-\,2^{8}\cdot 3^{33}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{4} + \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{5}{18} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{5}{18} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{18} a^{6} - \frac{1}{18} a^{5} + \frac{1}{6} a^{4} + \frac{2}{9} a^{2} - \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{108} a^{12} + \frac{1}{108} a^{11} - \frac{1}{108} a^{10} - \frac{5}{108} a^{8} - \frac{4}{27} a^{7} - \frac{17}{108} a^{6} + \frac{7}{54} a^{5} + \frac{17}{54} a^{4} - \frac{1}{9} a^{3} - \frac{4}{27} a^{2} + \frac{1}{27} a - \frac{8}{27}$, $\frac{1}{108} a^{13} - \frac{1}{54} a^{11} + \frac{1}{108} a^{10} + \frac{1}{108} a^{9} - \frac{5}{108} a^{8} - \frac{7}{108} a^{7} + \frac{7}{108} a^{6} + \frac{1}{54} a^{5} - \frac{23}{54} a^{4} + \frac{13}{54} a^{3} - \frac{10}{27} a^{2} - \frac{4}{9} a - \frac{13}{27}$, $\frac{1}{216} a^{14} - \frac{1}{216} a^{13} - \frac{1}{216} a^{12} - \frac{1}{108} a^{11} - \frac{1}{216} a^{10} + \frac{5}{216} a^{8} - \frac{1}{108} a^{7} + \frac{5}{54} a^{6} - \frac{5}{108} a^{5} - \frac{23}{54} a^{4} - \frac{1}{18} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{13}{27}$, $\frac{1}{648} a^{15} - \frac{1}{648} a^{14} - \frac{1}{648} a^{13} + \frac{13}{648} a^{11} - \frac{1}{324} a^{10} + \frac{17}{648} a^{9} - \frac{1}{54} a^{8} + \frac{1}{18} a^{7} - \frac{10}{81} a^{6} - \frac{5}{81} a^{5} + \frac{41}{162} a^{4} - \frac{1}{9} a^{3} - \frac{22}{81} a^{2} + \frac{26}{81} a - \frac{17}{81}$, $\frac{1}{648} a^{16} + \frac{1}{648} a^{14} + \frac{1}{324} a^{13} - \frac{1}{324} a^{12} + \frac{17}{648} a^{11} - \frac{1}{108} a^{10} + \frac{11}{648} a^{9} + \frac{11}{216} a^{8} + \frac{7}{162} a^{7} - \frac{17}{108} a^{6} + \frac{5}{324} a^{5} - \frac{73}{162} a^{4} + \frac{31}{162} a^{3} + \frac{5}{162} a^{2} - \frac{8}{27} a + \frac{13}{81}$, $\frac{1}{85459536} a^{17} - \frac{169}{1400976} a^{16} - \frac{17443}{28486512} a^{15} + \frac{18601}{42729768} a^{14} - \frac{2033}{606096} a^{13} + \frac{1201}{464454} a^{12} + \frac{135019}{28486512} a^{11} + \frac{1697}{700488} a^{10} - \frac{487861}{21364884} a^{9} - \frac{1595905}{42729768} a^{8} + \frac{691627}{10682442} a^{7} + \frac{200750}{1780407} a^{6} + \frac{1610909}{21364884} a^{5} + \frac{214595}{1780407} a^{4} - \frac{1575895}{10682442} a^{3} + \frac{75347}{593469} a^{2} - \frac{1561328}{5341221} a - \frac{1656862}{5341221}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{529477}{28486512} a^{17} + \frac{26701}{466992} a^{16} - \frac{4967081}{28486512} a^{15} - \frac{6579899}{14243256} a^{14} + \frac{578771}{606096} a^{13} - \frac{1045829}{619272} a^{12} - \frac{130177975}{28486512} a^{11} + \frac{258731}{58374} a^{10} - \frac{93494659}{14243256} a^{9} - \frac{108712801}{7121628} a^{8} + \frac{10139813}{3560814} a^{7} - \frac{69577673}{7121628} a^{6} - \frac{52033853}{3560814} a^{5} - \frac{12144761}{1780407} a^{4} - \frac{18180259}{3560814} a^{3} + \frac{4801165}{3560814} a^{2} - \frac{5028512}{1780407} a + \frac{1675852}{1780407} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2153285.052102543 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.177147.2, 9.3.3361317558192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |