Properties

Label 18.0.30384393663...0000.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{12}\cdot 5^{6}\cdot 7^{15}$
Root discriminant $13.74$
Ramified primes $2, 5, 7$
Class number $1$
Class group Trivial
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -10, 19, 34, -93, 55, 82, -127, -4, 206, -341, 343, -255, 151, -71, 26, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 + 26*x^16 - 71*x^15 + 151*x^14 - 255*x^13 + 343*x^12 - 341*x^11 + 206*x^10 - 4*x^9 - 127*x^8 + 82*x^7 + 55*x^6 - 93*x^5 + 34*x^4 + 19*x^3 - 10*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^18 - 7*x^17 + 26*x^16 - 71*x^15 + 151*x^14 - 255*x^13 + 343*x^12 - 341*x^11 + 206*x^10 - 4*x^9 - 127*x^8 + 82*x^7 + 55*x^6 - 93*x^5 + 34*x^4 + 19*x^3 - 10*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} + 26 x^{16} - 71 x^{15} + 151 x^{14} - 255 x^{13} + 343 x^{12} - 341 x^{11} + 206 x^{10} - 4 x^{9} - 127 x^{8} + 82 x^{7} + 55 x^{6} - 93 x^{5} + 34 x^{4} + 19 x^{3} - 10 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-303843936636352000000=-\,2^{12}\cdot 5^{6}\cdot 7^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{2121594436} a^{17} - \frac{127637241}{1060797218} a^{16} - \frac{35885471}{530398609} a^{15} - \frac{337776427}{2121594436} a^{14} + \frac{43959485}{1060797218} a^{13} + \frac{289056491}{2121594436} a^{12} - \frac{78717939}{530398609} a^{11} - \frac{353879369}{2121594436} a^{10} + \frac{312585907}{2121594436} a^{9} - \frac{894002487}{2121594436} a^{8} + \frac{116718837}{530398609} a^{7} - \frac{21312215}{81599786} a^{6} - \frac{292905519}{2121594436} a^{5} - \frac{131575661}{1060797218} a^{4} + \frac{1427636}{40799893} a^{3} - \frac{215946491}{2121594436} a^{2} + \frac{208155165}{2121594436} a - \frac{446679375}{2121594436}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{3138335077}{2121594436} a^{17} + \frac{10204475673}{1060797218} a^{16} - \frac{35653766657}{1060797218} a^{15} + \frac{186377230137}{2121594436} a^{14} - \frac{94381103238}{530398609} a^{13} + \frac{602246940453}{2121594436} a^{12} - \frac{188633876567}{530398609} a^{11} + \frac{655769702217}{2121594436} a^{10} - \frac{264789208273}{2121594436} a^{9} - \frac{179772030119}{2121594436} a^{8} + \frac{88988799555}{530398609} a^{7} - \frac{1919404561}{40799893} a^{6} - \frac{226923101829}{2121594436} a^{5} + \frac{93182821379}{1060797218} a^{4} - \frac{155687363}{40799893} a^{3} - \frac{75778260639}{2121594436} a^{2} + \frac{2557985243}{2121594436} a + \frac{7394472897}{2121594436} \) (order $14$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4023.807873190627 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_3$ (as 18T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{-7}) \), 3.1.980.1, \(\Q(\zeta_{7})^+\), 6.0.6722800.1, \(\Q(\zeta_{7})\), 9.3.941192000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
$5$5.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
7Data not computed