Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} - 14 x^{15} - 3 x^{14} + 7 x^{13} - 40 x^{12} + 197 x^{11} + 54 x^{10} + 581 x^{9} + 640 x^{8} + 673 x^{7} + 1501 x^{6} + 4 x^{5} + 1639 x^{4} - 537 x^{3} + 813 x^{2} - 234 x + 108 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3006202772296403717455872=-\,2^{18}\cdot 3^{9}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{4} a^{7} + \frac{1}{12} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{5}{12} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{6} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{3} - \frac{5}{12} a^{2}$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{10} + \frac{5}{24} a^{9} - \frac{1}{4} a^{7} - \frac{1}{24} a^{6} + \frac{1}{24} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{5}{24} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{1}{12} a^{8} + \frac{5}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{4} a^{5} + \frac{1}{3} a^{4} - \frac{1}{8} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{48} a^{15} - \frac{1}{48} a^{14} - \frac{1}{48} a^{13} + \frac{1}{48} a^{12} - \frac{1}{24} a^{10} + \frac{5}{48} a^{9} - \frac{11}{48} a^{8} - \frac{1}{12} a^{7} + \frac{1}{24} a^{6} - \frac{1}{16} a^{5} + \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{7}{16} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{48} a^{16} + \frac{1}{48} a^{12} - \frac{1}{16} a^{10} + \frac{1}{24} a^{9} + \frac{5}{48} a^{8} - \frac{1}{12} a^{7} + \frac{1}{48} a^{6} + \frac{1}{24} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{23}{48} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{2984976513072} a^{17} + \frac{685124087}{82916014252} a^{16} - \frac{9514982189}{1492488256536} a^{15} - \frac{8404308895}{1492488256536} a^{14} + \frac{8536104841}{994992171024} a^{13} - \frac{15841126615}{1492488256536} a^{12} - \frac{102999995959}{2984976513072} a^{11} + \frac{33676113175}{1492488256536} a^{10} - \frac{38154126007}{994992171024} a^{9} + \frac{137373184051}{1492488256536} a^{8} + \frac{463340713933}{2984976513072} a^{7} - \frac{309561367957}{1492488256536} a^{6} + \frac{421494220583}{1492488256536} a^{5} + \frac{620835693455}{1492488256536} a^{4} + \frac{132790420999}{2984976513072} a^{3} + \frac{8066961823}{41458007126} a^{2} + \frac{55593820313}{124374021378} a - \frac{5725945607}{41458007126}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1643045}{396043056} a^{17} + \frac{2838407}{132014352} a^{16} - \frac{17898445}{396043056} a^{15} + \frac{33584797}{396043056} a^{14} - \frac{2448251}{33003588} a^{13} - \frac{12268823}{99010764} a^{12} + \frac{130002035}{396043056} a^{11} - \frac{416825587}{396043056} a^{10} + \frac{43079857}{33003588} a^{9} - \frac{55613573}{49505382} a^{8} + \frac{375970687}{396043056} a^{7} + \frac{1149551581}{396043056} a^{6} - \frac{1216920683}{396043056} a^{5} + \frac{3186297583}{396043056} a^{4} - \frac{767550395}{99010764} a^{3} + \frac{212294633}{33003588} a^{2} - \frac{75469561}{16501794} a + \frac{4558807}{2750299} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2179489.4273506934 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.6936.1, 3.1.867.1 x3, 6.0.144324288.3, 6.0.2255067.2, 9.1.1001033261568.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |