Normalized defining polynomial
\( x^{18} - 7 x^{17} - 50 x^{16} + 520 x^{15} + 296 x^{14} - 14596 x^{13} + 31102 x^{12} + 144874 x^{11} - 651061 x^{10} - 156909 x^{9} + 5579540 x^{8} - 10349906 x^{7} - 6028004 x^{6} + 37023896 x^{5} + 14364176 x^{4} - 242844992 x^{3} + 517853824 x^{2} - 521534464 x + 242280448 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3003823256884925694987438506048666589724672=-\,2^{18}\cdot 7^{9}\cdot 127^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $229.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{8} + \frac{3}{32} a^{7} + \frac{5}{64} a^{6} - \frac{3}{16} a^{5} + \frac{3}{32} a^{4} - \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} + \frac{1}{64} a^{9} + \frac{5}{64} a^{7} - \frac{1}{32} a^{6} + \frac{5}{32} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{3}{128} a^{11} + \frac{3}{128} a^{10} + \frac{3}{128} a^{9} + \frac{5}{128} a^{8} - \frac{3}{128} a^{7} - \frac{1}{32} a^{6} + \frac{11}{64} a^{5} + \frac{3}{32} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{128} a^{15} - \frac{1}{32} a^{10} - \frac{3}{64} a^{9} - \frac{1}{16} a^{8} - \frac{1}{128} a^{7} + \frac{3}{32} a^{6} - \frac{1}{64} a^{5} - \frac{1}{4} a^{4} - \frac{7}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1024} a^{16} - \frac{1}{256} a^{15} - \frac{1}{512} a^{14} + \frac{1}{512} a^{13} + \frac{3}{512} a^{12} - \frac{5}{512} a^{11} + \frac{3}{128} a^{10} - \frac{27}{512} a^{9} - \frac{39}{1024} a^{8} + \frac{3}{512} a^{7} + \frac{25}{512} a^{6} - \frac{45}{256} a^{5} + \frac{11}{128} a^{4} + \frac{7}{64} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{335360194648085423020297631572698100439163904} a^{17} + \frac{24506031606334418479955855789510301237659}{83840048662021355755074407893174525109790976} a^{16} + \frac{469374838285088631415978369174518675269403}{167680097324042711510148815786349050219581952} a^{15} + \frac{344196359373891422557119859407546021771149}{167680097324042711510148815786349050219581952} a^{14} + \frac{306580782958333804783290741208710170881871}{167680097324042711510148815786349050219581952} a^{13} - \frac{609807029372582430706059872138451700371889}{167680097324042711510148815786349050219581952} a^{12} - \frac{603774435432667561689180733947338028381269}{20960012165505338938768601973293631277447744} a^{11} + \frac{1083674296809954800194287189062516407544953}{167680097324042711510148815786349050219581952} a^{10} + \frac{2025041121806988437538064347451845760025921}{335360194648085423020297631572698100439163904} a^{9} - \frac{2732928610225666981135593449584703359129081}{167680097324042711510148815786349050219581952} a^{8} - \frac{16559295319935316230154635675058621076161263}{167680097324042711510148815786349050219581952} a^{7} + \frac{5042041547848567751712930716978185693218467}{83840048662021355755074407893174525109790976} a^{6} + \frac{385827046590123212642574480974727751507379}{41920024331010677877537203946587262554895488} a^{5} + \frac{4939525187957689802942226150611493470698773}{20960012165505338938768601973293631277447744} a^{4} + \frac{1139215337644150167839559572643540400910523}{2620001520688167367346075246661703909680968} a^{3} + \frac{204286784504321324386620698978855529481065}{1310000760344083683673037623330851954840484} a^{2} - \frac{68911400931170724378919277074849407844277}{655000380172041841836518811665425977420242} a + \frac{52236940540667075875826020940199208058836}{327500190086020920918259405832712988710121}$
Class group and class number
$C_{6}\times C_{6}\times C_{648144}$, which has order $23333184$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5546046730.2947445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.16129.1, 3.3.1016.1, 6.0.89229611863.2, 6.0.354063808.1, 9.9.272832440404737536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $127$ | 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |